Electrical Properties of Polyetherimide-Based Nanocomposites Filled with Reduced Graphene Oxide and Graphene Oxide-Barium Titanate-Based Hybrid Nanoparticles

The electrical properties of nanocomposites based on polyetherimide (PEI) filled with reduced graphene oxide (rGO) and a graphene oxide hybrid material obtained from graphene oxide grafted with poly(monomethyl itaconate) (PMMI) modified with barium titanate nanoparticles (BTN) getting (GO-g-PMMI/BTN...

Full description

Bibliographic Details
Main Authors: Quimberly Cuenca-Bracamonte, Mehrdad Yazdani-Pedram, Héctor Aguilar-Bolados
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/20/4266
Description
Summary:The electrical properties of nanocomposites based on polyetherimide (PEI) filled with reduced graphene oxide (rGO) and a graphene oxide hybrid material obtained from graphene oxide grafted with poly(monomethyl itaconate) (PMMI) modified with barium titanate nanoparticles (BTN) getting (GO-g-PMMI/BTN) were studied. The results indicated that the nanocomposite filled with GO-g-PMMI/BTN had almost the same electrical conductivity as PEI (1 × 10<sup>−11</sup> S/cm). However, the nanocomposite containing 10 wt.% rGO and 10 wt.% GO-g-PMMI/BTN as fillers showed an electrical conductivity in the order of 1 × 10<sup>−7</sup> S/cm. This electrical conductivity is higher than that obtained for nanocomposites filled with 10% rGO (1 × 10<sup>−8</sup> S/cm). The combination of rGO and GO-g-PMMI/BTN as filler materials generates a synergistic effect within the polymeric matrix of the nanocomposite favoring the increase in the electrical conductivity of the system.
ISSN:2073-4360