Practical discontinuous tracking control for a permanent magnet synchronous motor

In this paper, the practical discontinuous control algorithm is used in the tracking controller design for a permanent magnet synchronous motor (PMSM). Although the theory of discontinuous control has been studied intensely, it is seldom applied to the actual systems, which encourages us to spread t...

Full description

Bibliographic Details
Main Authors: Bin Liu, Dengxiu Yu, Xing Zeng, Dianbiao Dong, Xinyi He, Xiaodi Li
Format: Article
Language:English
Published: AIMS Press 2023-01-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2023178?viewType=HTML
Description
Summary:In this paper, the practical discontinuous control algorithm is used in the tracking controller design for a permanent magnet synchronous motor (PMSM). Although the theory of discontinuous control has been studied intensely, it is seldom applied to the actual systems, which encourages us to spread the discontinuous control algorithm to motor control. Due to the constraints of physical conditions, the input of the system is limited. Hence, we design the practical discontinuous control algorithm for PMSM with input saturation. To achieve the tracking control of PMSM, we define the error variables of the tracking control, and the sliding mode control method is introduced to complete the design of the discontinuous controller. Based on the Lyapunov stability theory, the error variables are guaranteed to converge to zero asymptotically, and the tracking control of the system is realized. Finally, the validity of the proposed control method is verified by a simulation example and the experimental platform.
ISSN:1551-0018