Characterization of Silver Nanowire Layers in the Terahertz Frequency Range

Thin layers of silver nanowires are commonly studied for transparent electronics. However, reports of their terahertz (THz) properties are scarce. Here, we present the electrical and optical properties of thin silver nanowire layers with increasing densities at THz frequencies. We demonstrate that t...

Full description

Bibliographic Details
Main Authors: Aleksandra Przewłoka, Serguei Smirnov, Irina Nefedova, Aleksandra Krajewska, Igor S. Nefedov, Petr S. Demchenko, Dmitry V. Zykov, Valentin S. Chebotarev, Dmytro B. But, Kamil Stelmaszczyk, Maksym Dub, Dariusz Zasada, Alvydas Lisauskas, Joachim Oberhammer, Mikhail K. Khodzitsky, Wojciech Knap, Dmitri Lioubtchenko
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/23/7399
Description
Summary:Thin layers of silver nanowires are commonly studied for transparent electronics. However, reports of their terahertz (THz) properties are scarce. Here, we present the electrical and optical properties of thin silver nanowire layers with increasing densities at THz frequencies. We demonstrate that the absorbance, transmittance and reflectance of the metal nanowire layers in the frequency range of 0.2 THz to 1.3 THz is non-monotonic and depends on the nanowire dimensions and filling factor. We also present and validate a theoretical approach describing well the experimental results and allowing the fitting of the THz response of the nanowire layers by a Drude–Smith model of conductivity. Our results pave the way toward the application of silver nanowires as a prospective material for transparent and conductive coatings, and printable antennas operating in the terahertz range—significant for future wireless communication devices.
ISSN:1996-1944