Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces

Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approx...

Full description

Bibliographic Details
Main Authors: Shengqi Yu, Jie Liu
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/9/2041
_version_ 1797602187817254912
author Shengqi Yu
Jie Liu
author_facet Shengqi Yu
Jie Liu
author_sort Shengqi Yu
collection DOAJ
description Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approximate and actual solution is negligible, thus succeeding in proving the nonuniform dependence result in both supercritical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mo movablelimits="true" form="prefix">max</mo><mo>{</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>}</mo><mo>,</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi><mo>,</mo><mspace width="0.166667em"></mspace><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>∞</mi></mrow></semantics></math></inline-formula> and critical Besov space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In the non-periodic case, we constructed two sequences of initial data with high and low-frequency terms by analyzing the inner structure of the system under investigation in detail, and we proved that the distance between the two corresponding solution sequences is lower-bounded by time <i>t</i>, but converges to zero at initial time. This implies that the solution map is not uniformly continuous both in supercritical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mo movablelimits="true" form="prefix">max</mo><mo>{</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>}</mo><mo>,</mo><mspace width="0.166667em"></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi><mo>,</mo><mspace width="0.166667em"></mspace><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>∞</mi></mrow></semantics></math></inline-formula> and critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac></mrow></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac></mrow></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula>. The proof of nonuniform dependence is based on approximate solutions and Littlewood–Paley decomposition theory. These approaches are widely applicable in the study of continuous properties for shallow water equations.
first_indexed 2024-03-11T04:13:31Z
format Article
id doaj.art-c146790b8d93461cbbd94adeaf3d463c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:13:31Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c146790b8d93461cbbd94adeaf3d463c2023-11-17T23:19:13ZengMDPI AGMathematics2227-73902023-04-01119204110.3390/math11092041Nonuniform Dependence of a Two-Component NOVIKOV System in Besov SpacesShengqi Yu0Jie Liu1School of Sciences, Nantong University, Nantong 226007, ChinaSchool of Sciences, Nantong University, Nantong 226007, ChinaConsidered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approximate and actual solution is negligible, thus succeeding in proving the nonuniform dependence result in both supercritical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mo movablelimits="true" form="prefix">max</mo><mo>{</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>}</mo><mo>,</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi><mo>,</mo><mspace width="0.166667em"></mspace><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>∞</mi></mrow></semantics></math></inline-formula> and critical Besov space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In the non-periodic case, we constructed two sequences of initial data with high and low-frequency terms by analyzing the inner structure of the system under investigation in detail, and we proved that the distance between the two corresponding solution sequences is lower-bounded by time <i>t</i>, but converges to zero at initial time. This implies that the solution map is not uniformly continuous both in supercritical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mi>r</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mo movablelimits="true" form="prefix">max</mo><mo>{</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>}</mo><mo>,</mo><mspace width="0.166667em"></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi><mo>,</mo><mspace width="0.166667em"></mspace><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>∞</mi></mrow></semantics></math></inline-formula> and critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac></mrow></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>B</mi><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>p</mi></mfrac></mrow></msubsup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula>. The proof of nonuniform dependence is based on approximate solutions and Littlewood–Paley decomposition theory. These approaches are widely applicable in the study of continuous properties for shallow water equations.https://www.mdpi.com/2227-7390/11/9/2041two-component Novikov systemnon-uniform dependencesupercritical Besov spacescritical Besov spaces
spellingShingle Shengqi Yu
Jie Liu
Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
Mathematics
two-component Novikov system
non-uniform dependence
supercritical Besov spaces
critical Besov spaces
title Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
title_full Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
title_fullStr Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
title_full_unstemmed Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
title_short Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
title_sort nonuniform dependence of a two component novikov system in besov spaces
topic two-component Novikov system
non-uniform dependence
supercritical Besov spaces
critical Besov spaces
url https://www.mdpi.com/2227-7390/11/9/2041
work_keys_str_mv AT shengqiyu nonuniformdependenceofatwocomponentnovikovsysteminbesovspaces
AT jieliu nonuniformdependenceofatwocomponentnovikovsysteminbesovspaces