Summary: | The multichannel or wide-angle imaging performance of synthetic aperture radar (SAR) can be improved by applying the compressed sensing (CS) theory to each channel or sub-aperture image formation independently. However, this not only neglects the complementary information between signals of each channel or sub-aperture, but also may lead to failure in guaranteeing the consistency of the position of a scatterer in different channel or sub-aperture images which will make the extraction of some scattering information become difficult. By exploiting the joint sparsity of the signal ensemble, this paper proposes a novel CS-based method for joint sparse recovery of all channel or sub-aperture images. Solving the joint sparse recovery problem with a modified orthogonal matching pursuit algorithm, the recovery precision of scatterers is effectively improved and the scattering information is also preserved during the image formation process. Finally, the simulation and real data is used for verifying the effectiveness of the proposed method. Compared with single channel or sub-aperture independent CS processing, the proposed method can not only obtain better imaging performance with fewer measurements, but also preserve more valuable scattering information for target recognition.
|