Proportional Itô–Doob Stochastic Fractional Order Systems

In this article, we discuss the existence and uniqueness of proportional Itô–Doob stochastic fractional order systems (PIDSFOS) by using the Picard iteration method. The paper provides new results using the proportional fractional integral and stochastic calculus techniques. We have shown the conver...

Full description

Bibliographic Details
Main Authors: Abdellatif Ben Makhlouf, Lassaad Mchiri, Hakeem A. Othman, Hafedh M. S. Rguigui, Salah Boulaaras
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/9/2049
_version_ 1797602188038504448
author Abdellatif Ben Makhlouf
Lassaad Mchiri
Hakeem A. Othman
Hafedh M. S. Rguigui
Salah Boulaaras
author_facet Abdellatif Ben Makhlouf
Lassaad Mchiri
Hakeem A. Othman
Hafedh M. S. Rguigui
Salah Boulaaras
author_sort Abdellatif Ben Makhlouf
collection DOAJ
description In this article, we discuss the existence and uniqueness of proportional Itô–Doob stochastic fractional order systems (PIDSFOS) by using the Picard iteration method. The paper provides new results using the proportional fractional integral and stochastic calculus techniques. We have shown the convergence of the solution of the averaged PIDSFOS to that of the standard PIDSFOS in the context of the mean square and also in probability. One example is given to illustrate our results.
first_indexed 2024-03-11T04:13:31Z
format Article
id doaj.art-c18f18c730444a8eb68dbef01f9f8e5f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:13:31Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c18f18c730444a8eb68dbef01f9f8e5f2023-11-17T23:19:19ZengMDPI AGMathematics2227-73902023-04-01119204910.3390/math11092049Proportional Itô–Doob Stochastic Fractional Order SystemsAbdellatif Ben Makhlouf0Lassaad Mchiri1Hakeem A. Othman2Hafedh M. S. Rguigui3Salah Boulaaras4Department of Mathematics, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi ArabiaENSIIE, University of Evry-Val-d’Essonne, 1 Square de la Résistance, 91025 Évry-Courcouronnes, CEDEX, FranceDepartment of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, Al Qunfudhah 28821, Saudi ArabiaDepartment of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, Al Qunfudhah 28821, Saudi ArabiaDepartment of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Almelida 51452, Saudi ArabiaIn this article, we discuss the existence and uniqueness of proportional Itô–Doob stochastic fractional order systems (PIDSFOS) by using the Picard iteration method. The paper provides new results using the proportional fractional integral and stochastic calculus techniques. We have shown the convergence of the solution of the averaged PIDSFOS to that of the standard PIDSFOS in the context of the mean square and also in probability. One example is given to illustrate our results.https://www.mdpi.com/2227-7390/11/9/2049stochastic systemproportional fractional integral
spellingShingle Abdellatif Ben Makhlouf
Lassaad Mchiri
Hakeem A. Othman
Hafedh M. S. Rguigui
Salah Boulaaras
Proportional Itô–Doob Stochastic Fractional Order Systems
Mathematics
stochastic system
proportional fractional integral
title Proportional Itô–Doob Stochastic Fractional Order Systems
title_full Proportional Itô–Doob Stochastic Fractional Order Systems
title_fullStr Proportional Itô–Doob Stochastic Fractional Order Systems
title_full_unstemmed Proportional Itô–Doob Stochastic Fractional Order Systems
title_short Proportional Itô–Doob Stochastic Fractional Order Systems
title_sort proportional ito doob stochastic fractional order systems
topic stochastic system
proportional fractional integral
url https://www.mdpi.com/2227-7390/11/9/2049
work_keys_str_mv AT abdellatifbenmakhlouf proportionalitodoobstochasticfractionalordersystems
AT lassaadmchiri proportionalitodoobstochasticfractionalordersystems
AT hakeemaothman proportionalitodoobstochasticfractionalordersystems
AT hafedhmsrguigui proportionalitodoobstochasticfractionalordersystems
AT salahboulaaras proportionalitodoobstochasticfractionalordersystems