Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance
The formation mechanism of tooth surface twist in helical gear generating machining (worm grinding and hobbing) and the measure to reduce the tooth surface twist are mainly studied. Based on the diagonal worm grinding or hobbing machining method, the tooth surface equation of helical gears with axia...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Office of Journal of Mechanical Transmission
2020-01-01
|
Series: | Jixie chuandong |
Subjects: | |
Online Access: | http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2020.10.003 |
_version_ | 1797819635692732416 |
---|---|
author | Shihao Gao Long Yang Siyu Chen Jinyuan Tang |
author_facet | Shihao Gao Long Yang Siyu Chen Jinyuan Tang |
author_sort | Shihao Gao |
collection | DOAJ |
description | The formation mechanism of tooth surface twist in helical gear generating machining (worm grinding and hobbing) and the measure to reduce the tooth surface twist are mainly studied. Based on the diagonal worm grinding or hobbing machining method, the tooth surface equation of helical gears with axial modification is constructed. The standard helical gear tooth surface and the helical gear machining tooth surface with axial modification are compared to obtain the correlation law between the speed ratio of axial feed and diagonal feed of the generating tool (worm or hob) and tooth surface twist. Based on the derived tooth surface equation of the helical gear with axial modification, Matlab and CATIA combined modeling technology is used to establish a three-dimensional geometric model of the helical gear pair with axial modification. The simulation analysis of the meshing performance of the gear pairs with different levels of tooth surface twist shows the influence of tooth surface twist on the meshing performance. The research shows that, the larger the helix angle of helical gear with axial modification is, the more serious the tooth surface twist is. Modification amount does not affect the twist of the tooth surface. The ratio of the axial feed and diagonal feed of the tool has the best match with the tooth surface twist. Improved tooth surface twist can effectively reduce the transmission error and improve the gear carrying capacity. The CAD/CAE integrated modeling and analysis method based on the combination of Matlab, CATIA and finite element commercial software provides methods and tools for the research on tooth surface twist of helical gears with axial modification. |
first_indexed | 2024-03-13T09:25:33Z |
format | Article |
id | doaj.art-c18f7e00c8c54aaeae180f3be02e204d |
institution | Directory Open Access Journal |
issn | 1004-2539 |
language | zho |
last_indexed | 2024-03-13T09:25:33Z |
publishDate | 2020-01-01 |
publisher | Editorial Office of Journal of Mechanical Transmission |
record_format | Article |
series | Jixie chuandong |
spelling | doaj.art-c18f7e00c8c54aaeae180f3be02e204d2023-05-26T09:35:06ZzhoEditorial Office of Journal of Mechanical TransmissionJixie chuandong1004-25392020-01-0144131829791431Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing PerformanceShihao GaoLong YangSiyu ChenJinyuan TangThe formation mechanism of tooth surface twist in helical gear generating machining (worm grinding and hobbing) and the measure to reduce the tooth surface twist are mainly studied. Based on the diagonal worm grinding or hobbing machining method, the tooth surface equation of helical gears with axial modification is constructed. The standard helical gear tooth surface and the helical gear machining tooth surface with axial modification are compared to obtain the correlation law between the speed ratio of axial feed and diagonal feed of the generating tool (worm or hob) and tooth surface twist. Based on the derived tooth surface equation of the helical gear with axial modification, Matlab and CATIA combined modeling technology is used to establish a three-dimensional geometric model of the helical gear pair with axial modification. The simulation analysis of the meshing performance of the gear pairs with different levels of tooth surface twist shows the influence of tooth surface twist on the meshing performance. The research shows that, the larger the helix angle of helical gear with axial modification is, the more serious the tooth surface twist is. Modification amount does not affect the twist of the tooth surface. The ratio of the axial feed and diagonal feed of the tool has the best match with the tooth surface twist. Improved tooth surface twist can effectively reduce the transmission error and improve the gear carrying capacity. The CAD/CAE integrated modeling and analysis method based on the combination of Matlab, CATIA and finite element commercial software provides methods and tools for the research on tooth surface twist of helical gears with axial modification.http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2020.10.003Diagonal hobbing;Axial modification;Helical gear;Tooth surface twist;Meshing performance |
spellingShingle | Shihao Gao Long Yang Siyu Chen Jinyuan Tang Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance Jixie chuandong Diagonal hobbing;Axial modification;Helical gear;Tooth surface twist;Meshing performance |
title | Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance |
title_full | Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance |
title_fullStr | Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance |
title_full_unstemmed | Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance |
title_short | Analysis on the Machining Twisting mechanism of Tooth Surface with Axial Modification of Helical Gear and Its Influence on Meshing Performance |
title_sort | analysis on the machining twisting mechanism of tooth surface with axial modification of helical gear and its influence on meshing performance |
topic | Diagonal hobbing;Axial modification;Helical gear;Tooth surface twist;Meshing performance |
url | http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2020.10.003 |
work_keys_str_mv | AT shihaogao analysisonthemachiningtwistingmechanismoftoothsurfacewithaxialmodificationofhelicalgearanditsinfluenceonmeshingperformance AT longyang analysisonthemachiningtwistingmechanismoftoothsurfacewithaxialmodificationofhelicalgearanditsinfluenceonmeshingperformance AT siyuchen analysisonthemachiningtwistingmechanismoftoothsurfacewithaxialmodificationofhelicalgearanditsinfluenceonmeshingperformance AT jinyuantang analysisonthemachiningtwistingmechanismoftoothsurfacewithaxialmodificationofhelicalgearanditsinfluenceonmeshingperformance |