Distance graphs with maximum chromatic number

Let $D$ be a finite set of integers. The distance graph $G(D)$ has the set of integers as vertices and two vertices at distance $d ∈D$ are adjacent in $G(D)$. A conjecture of Xuding Zhu states that if the chromatic number of $G (D)$ achieves its maximum value $|D|+1$ then the graph has a clique of o...

Full description

Bibliographic Details
Main Authors: Javier Barajas, Oriol Serra
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3391/pdf
_version_ 1827324095185813504
author Javier Barajas
Oriol Serra
author_facet Javier Barajas
Oriol Serra
author_sort Javier Barajas
collection DOAJ
description Let $D$ be a finite set of integers. The distance graph $G(D)$ has the set of integers as vertices and two vertices at distance $d ∈D$ are adjacent in $G(D)$. A conjecture of Xuding Zhu states that if the chromatic number of $G (D)$ achieves its maximum value $|D|+1$ then the graph has a clique of order $|D|$. We prove that the chromatic number of a distance graph with $D=\{ a,b,c,d\}$ is five if and only if either $D=\{1,2,3,4k\}$ or $D=\{ a,b,a+b,a+2b\}$ with $a \equiv 0 (mod 2)$ and $b \equiv 1 (mod 2)$. This confirms Zhu's conjecture for $|D|=4$.
first_indexed 2024-04-25T02:03:16Z
format Article
id doaj.art-c1a6cf8e88c34d3cb0feb6fa59fcfe1f
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:03:16Z
publishDate 2005-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-c1a6cf8e88c34d3cb0feb6fa59fcfe1f2024-03-07T14:41:15ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502005-01-01DMTCS Proceedings vol. AE,...Proceedings10.46298/dmtcs.33913391Distance graphs with maximum chromatic numberJavier Barajas0Oriol Serra1https://orcid.org/0000-0001-8561-4631Universitat Politècnica de Catalunya [Barcelona]Universitat Politècnica de Catalunya [Barcelona]Let $D$ be a finite set of integers. The distance graph $G(D)$ has the set of integers as vertices and two vertices at distance $d ∈D$ are adjacent in $G(D)$. A conjecture of Xuding Zhu states that if the chromatic number of $G (D)$ achieves its maximum value $|D|+1$ then the graph has a clique of order $|D|$. We prove that the chromatic number of a distance graph with $D=\{ a,b,c,d\}$ is five if and only if either $D=\{1,2,3,4k\}$ or $D=\{ a,b,a+b,a+2b\}$ with $a \equiv 0 (mod 2)$ and $b \equiv 1 (mod 2)$. This confirms Zhu's conjecture for $|D|=4$.https://dmtcs.episciences.org/3391/pdfdistance graphschromatic number[info.info-dm] computer science [cs]/discrete mathematics [cs.dm][math.math-co] mathematics [math]/combinatorics [math.co]
spellingShingle Javier Barajas
Oriol Serra
Distance graphs with maximum chromatic number
Discrete Mathematics & Theoretical Computer Science
distance graphs
chromatic number
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
title Distance graphs with maximum chromatic number
title_full Distance graphs with maximum chromatic number
title_fullStr Distance graphs with maximum chromatic number
title_full_unstemmed Distance graphs with maximum chromatic number
title_short Distance graphs with maximum chromatic number
title_sort distance graphs with maximum chromatic number
topic distance graphs
chromatic number
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
url https://dmtcs.episciences.org/3391/pdf
work_keys_str_mv AT javierbarajas distancegraphswithmaximumchromaticnumber
AT oriolserra distancegraphswithmaximumchromaticnumber