Distance graphs with maximum chromatic number
Let $D$ be a finite set of integers. The distance graph $G(D)$ has the set of integers as vertices and two vertices at distance $d ∈D$ are adjacent in $G(D)$. A conjecture of Xuding Zhu states that if the chromatic number of $G (D)$ achieves its maximum value $|D|+1$ then the graph has a clique of o...
Glavni autori: | Javier Barajas, Oriol Serra |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
Discrete Mathematics & Theoretical Computer Science
2005-01-01
|
Serija: | Discrete Mathematics & Theoretical Computer Science |
Teme: | |
Online pristup: | https://dmtcs.episciences.org/3391/pdf |
Slični predmeti
-
An upper bound for the chromatic number of line graphs
od: Andrew D. King, i dr.
Izdano: (2005-01-01) -
(k − 2)-linear connected components in hypergraphs of rank k
od: Florian Galliot, i dr.
Izdano: (2023-11-01) -
On Kerov polynomials for Jack characters (extended abstract)
od: Valentin Féray, i dr.
Izdano: (2013-01-01) -
Staircase Macdonald polynomials and the $q$-Discriminant
od: Adrien Boussicault, i dr.
Izdano: (2008-01-01) -
On the Minimum Number of Completely 3-Scrambling Permutations
od: Jun Tarui
Izdano: (2005-01-01)