Distance graphs with maximum chromatic number
Let $D$ be a finite set of integers. The distance graph $G(D)$ has the set of integers as vertices and two vertices at distance $d ∈D$ are adjacent in $G(D)$. A conjecture of Xuding Zhu states that if the chromatic number of $G (D)$ achieves its maximum value $|D|+1$ then the graph has a clique of o...
Huvudupphovsmän: | Javier Barajas, Oriol Serra |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Discrete Mathematics & Theoretical Computer Science
2005-01-01
|
Serie: | Discrete Mathematics & Theoretical Computer Science |
Ämnen: | |
Länkar: | https://dmtcs.episciences.org/3391/pdf |
Liknande verk
-
An upper bound for the chromatic number of line graphs
av: Andrew D. King, et al.
Publicerad: (2005-01-01) -
(k − 2)-linear connected components in hypergraphs of rank k
av: Florian Galliot, et al.
Publicerad: (2023-11-01) -
On Kerov polynomials for Jack characters (extended abstract)
av: Valentin Féray, et al.
Publicerad: (2013-01-01) -
On the $L(p,1)$-labelling of graphs
av: Daniel Gonçalves
Publicerad: (2005-01-01) -
Staircase Macdonald polynomials and the $q$-Discriminant
av: Adrien Boussicault, et al.
Publicerad: (2008-01-01)