Generalized Taylor’s Formula and Steffensen’s Inequality
New Steffensen-type inequalities are obtained by combining generalized Taylor expansions, Rabier and Pečarić extensions of Steffensen’s inequality and Faà di Bruno’s formula for higher order derivatives of the composition.
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/16/3570 |
_version_ | 1797583983273312256 |
---|---|
author | Asfand Fahad Saad Ihsaan Butt Josip Pečarić Marjan Praljak |
author_facet | Asfand Fahad Saad Ihsaan Butt Josip Pečarić Marjan Praljak |
author_sort | Asfand Fahad |
collection | DOAJ |
description | New Steffensen-type inequalities are obtained by combining generalized Taylor expansions, Rabier and Pečarić extensions of Steffensen’s inequality and Faà di Bruno’s formula for higher order derivatives of the composition. |
first_indexed | 2024-03-10T23:45:56Z |
format | Article |
id | doaj.art-c1b10f1e37c5424d95bf4fe7c999bfaa |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T23:45:56Z |
publishDate | 2023-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-c1b10f1e37c5424d95bf4fe7c999bfaa2023-11-19T02:03:57ZengMDPI AGMathematics2227-73902023-08-011116357010.3390/math11163570Generalized Taylor’s Formula and Steffensen’s InequalityAsfand Fahad0Saad Ihsaan Butt1Josip Pečarić2Marjan Praljak3School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, ChinaDepartment of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, PakistanCroatian Academy of Sciences and Arts, 10000 Zagreb, CroatiaFaculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, CroatiaNew Steffensen-type inequalities are obtained by combining generalized Taylor expansions, Rabier and Pečarić extensions of Steffensen’s inequality and Faà di Bruno’s formula for higher order derivatives of the composition.https://www.mdpi.com/2227-7390/11/16/3570Steffensen’s inequalitygeneralized Taylor’s formulaFaà di Bruno’s formulaEuler polynomialconvex functions |
spellingShingle | Asfand Fahad Saad Ihsaan Butt Josip Pečarić Marjan Praljak Generalized Taylor’s Formula and Steffensen’s Inequality Mathematics Steffensen’s inequality generalized Taylor’s formula Faà di Bruno’s formula Euler polynomial convex functions |
title | Generalized Taylor’s Formula and Steffensen’s Inequality |
title_full | Generalized Taylor’s Formula and Steffensen’s Inequality |
title_fullStr | Generalized Taylor’s Formula and Steffensen’s Inequality |
title_full_unstemmed | Generalized Taylor’s Formula and Steffensen’s Inequality |
title_short | Generalized Taylor’s Formula and Steffensen’s Inequality |
title_sort | generalized taylor s formula and steffensen s inequality |
topic | Steffensen’s inequality generalized Taylor’s formula Faà di Bruno’s formula Euler polynomial convex functions |
url | https://www.mdpi.com/2227-7390/11/16/3570 |
work_keys_str_mv | AT asfandfahad generalizedtaylorsformulaandsteffensensinequality AT saadihsaanbutt generalizedtaylorsformulaandsteffensensinequality AT josippecaric generalizedtaylorsformulaandsteffensensinequality AT marjanpraljak generalizedtaylorsformulaandsteffensensinequality |