Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent

Abstract In this paper, we study a fractional Kirchhoff type equation with Hardy–Littlewood–Sobolev critical exponent. By using variational methods, we obtain the existence of mountain-pass type solution and negative energy solutions. Also, we prove some further properties of solutions.

Bibliographic Details
Main Authors: Jichao Wang, Jian Zhang, Yujun Cui
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1239-4
_version_ 1819025781521645568
author Jichao Wang
Jian Zhang
Yujun Cui
author_facet Jichao Wang
Jian Zhang
Yujun Cui
author_sort Jichao Wang
collection DOAJ
description Abstract In this paper, we study a fractional Kirchhoff type equation with Hardy–Littlewood–Sobolev critical exponent. By using variational methods, we obtain the existence of mountain-pass type solution and negative energy solutions. Also, we prove some further properties of solutions.
first_indexed 2024-12-21T05:16:08Z
format Article
id doaj.art-c1b1ac6ce4c7497ea0eabbfdb1a44ea2
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-21T05:16:08Z
publishDate 2019-07-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-c1b1ac6ce4c7497ea0eabbfdb1a44ea22022-12-21T19:14:55ZengSpringerOpenBoundary Value Problems1687-27702019-07-012019111710.1186/s13661-019-1239-4Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponentJichao Wang0Jian Zhang1Yujun Cui2College of Science, China University of PetroleumCollege of Science, China University of PetroleumDepartment of Mathematics, Shandong University of Science and TechnologyAbstract In this paper, we study a fractional Kirchhoff type equation with Hardy–Littlewood–Sobolev critical exponent. By using variational methods, we obtain the existence of mountain-pass type solution and negative energy solutions. Also, we prove some further properties of solutions.http://link.springer.com/article/10.1186/s13661-019-1239-4Fractional equationKirchhoff typeHardy–Littlewood–Sobolev critical exponentMultiple solution
spellingShingle Jichao Wang
Jian Zhang
Yujun Cui
Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
Boundary Value Problems
Fractional equation
Kirchhoff type
Hardy–Littlewood–Sobolev critical exponent
Multiple solution
title Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
title_full Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
title_fullStr Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
title_full_unstemmed Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
title_short Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
title_sort multiple solutions to the kirchhoff fractional equation involving hardy littlewood sobolev critical exponent
topic Fractional equation
Kirchhoff type
Hardy–Littlewood–Sobolev critical exponent
Multiple solution
url http://link.springer.com/article/10.1186/s13661-019-1239-4
work_keys_str_mv AT jichaowang multiplesolutionstothekirchhofffractionalequationinvolvinghardylittlewoodsobolevcriticalexponent
AT jianzhang multiplesolutionstothekirchhofffractionalequationinvolvinghardylittlewoodsobolevcriticalexponent
AT yujuncui multiplesolutionstothekirchhofffractionalequationinvolvinghardylittlewoodsobolevcriticalexponent