Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion
Nonlinear optical response is well studied in the context of semiconductors and has gained a renaissance in studies of topological materials in the recent decade. So far it mainly deals with nonmagnetic materials and it is believed to root in the Berry curvature of the material band structure. In th...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-07-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.2.033100 |
_version_ | 1827286133488222208 |
---|---|
author | Tobias Holder Daniel Kaplan Binghai Yan |
author_facet | Tobias Holder Daniel Kaplan Binghai Yan |
author_sort | Tobias Holder |
collection | DOAJ |
description | Nonlinear optical response is well studied in the context of semiconductors and has gained a renaissance in studies of topological materials in the recent decade. So far it mainly deals with nonmagnetic materials and it is believed to root in the Berry curvature of the material band structure. In this work we revisit the general formalism for the second-order optical response and focus on the consequences of the time-reversal-symmetry (T) breaking, by a diagrammatic approach. We have identified three physical mechanisms to generate a DC photocurrent, i.e., the Berry curvature, a term closely related to the quantum metric, and the diabatic motion. All three effects can be understood intuitively from the anomalous acceleration. The first two terms are respectively the antisymmetric and symmetric parts of the quantum geometric tensor. The last term is due to the dynamical antilocalization that appears from the phase accumulation between time-reversed fermion loops. Additionally, we derive the semiclassical conductivity that includes both intra- and interband effects. We find that T breaking can lead to a greatly enhanced nonlinear anomalous Hall effect that is beyond the contribution by the Berry curvature dipole. |
first_indexed | 2024-04-24T10:25:14Z |
format | Article |
id | doaj.art-c1b724ffd0684a8583f9975731d0ab22 |
institution | Directory Open Access Journal |
issn | 2643-1564 |
language | English |
last_indexed | 2024-04-24T10:25:14Z |
publishDate | 2020-07-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Research |
spelling | doaj.art-c1b724ffd0684a8583f9975731d0ab222024-04-12T16:57:25ZengAmerican Physical SocietyPhysical Review Research2643-15642020-07-012303310010.1103/PhysRevResearch.2.033100Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motionTobias HolderDaniel KaplanBinghai YanNonlinear optical response is well studied in the context of semiconductors and has gained a renaissance in studies of topological materials in the recent decade. So far it mainly deals with nonmagnetic materials and it is believed to root in the Berry curvature of the material band structure. In this work we revisit the general formalism for the second-order optical response and focus on the consequences of the time-reversal-symmetry (T) breaking, by a diagrammatic approach. We have identified three physical mechanisms to generate a DC photocurrent, i.e., the Berry curvature, a term closely related to the quantum metric, and the diabatic motion. All three effects can be understood intuitively from the anomalous acceleration. The first two terms are respectively the antisymmetric and symmetric parts of the quantum geometric tensor. The last term is due to the dynamical antilocalization that appears from the phase accumulation between time-reversed fermion loops. Additionally, we derive the semiclassical conductivity that includes both intra- and interband effects. We find that T breaking can lead to a greatly enhanced nonlinear anomalous Hall effect that is beyond the contribution by the Berry curvature dipole.http://doi.org/10.1103/PhysRevResearch.2.033100 |
spellingShingle | Tobias Holder Daniel Kaplan Binghai Yan Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion Physical Review Research |
title | Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion |
title_full | Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion |
title_fullStr | Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion |
title_full_unstemmed | Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion |
title_short | Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion |
title_sort | consequences of time reversal symmetry breaking in the light matter interaction berry curvature quantum metric and diabatic motion |
url | http://doi.org/10.1103/PhysRevResearch.2.033100 |
work_keys_str_mv | AT tobiasholder consequencesoftimereversalsymmetrybreakinginthelightmatterinteractionberrycurvaturequantummetricanddiabaticmotion AT danielkaplan consequencesoftimereversalsymmetrybreakinginthelightmatterinteractionberrycurvaturequantummetricanddiabaticmotion AT binghaiyan consequencesoftimereversalsymmetrybreakinginthelightmatterinteractionberrycurvaturequantummetricanddiabaticmotion |