The optimal pebbling of spindle graphs

Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that for some distribution of m pebble...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Gao Ze-Tu, Yin Jian-Hua
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: De Gruyter 2019-11-01
মালা:Open Mathematics
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.1515/math-2019-0094
বিবরন
সংক্ষিপ্ত:Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble can be moved to any vertex of G by a sequence of pebbling moves. Let Pk be the path on k vertices. Snevily defined the n–k spindle graph as follows: take n copies of Pk and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Pk to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n–k spindle graph. In this paper, we determine the optimal pebbling number for spindle graphs.
আইএসএসএন:2391-5455