Automatic Mapping of Landslides by the ResU-Net

Massive landslides over large regions can be triggered by heavy rainfalls or major seismic events. Mapping regional landslides quickly is important for disaster mitigation. In recent years, deep learning methods have been successfully applied in many fields, including landslide automatic identificat...

Full description

Bibliographic Details
Main Authors: Wenwen Qi, Mengfei Wei, Wentao Yang, Chong Xu, Chao Ma
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/15/2487
Description
Summary:Massive landslides over large regions can be triggered by heavy rainfalls or major seismic events. Mapping regional landslides quickly is important for disaster mitigation. In recent years, deep learning methods have been successfully applied in many fields, including landslide automatic identification. In this work, we proposed a deep learning approach, the ResU-Net, to map regional landslides automatically. This method and a baseline model (U-Net) were collectively tested in Tianshui city, Gansu province, where a heavy rainfall triggered more than 10,000 landslides in July 2013. All models were performed on a 3-band (near infrared, red, and green) GeoEye-1 image with a spatial resolution of 0.5 m. At such a fine spatial resolution, the study area is spatially heterogeneous. The tested study area is 128 km<sup>2</sup>, 80% of which was used to train models and the remaining 20% was used to validate accuracy of the models. This proposed ResU-Net achieved higher accuracy than the baseline U-Net model in this mountain region, where F1 improved by 0.09. Compared with the U-Net model, this proposed model (ResU-Net) performs better in discriminating landslides from bare floodplains along river valleys and unplanted terraces. By incorporating environmental information, this ResU-Net may also be applied to other landslide mapping, such as landslide susceptibility and hazard assessment.
ISSN:2072-4292