$q$-Hook formula of Gansner type for a generalized Young diagram

The purpose of this paper is to present the $q$-hook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give...

Full description

Bibliographic Details
Main Author: Kento Nakada
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2009-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2684/pdf
_version_ 1827324095430131712
author Kento Nakada
author_facet Kento Nakada
author_sort Kento Nakada
collection DOAJ
description The purpose of this paper is to present the $q$-hook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give a generalization of P. MacMahon's identity as an application of the $q$-hook formula.
first_indexed 2024-04-25T02:03:17Z
format Article
id doaj.art-c1e237038a554985a0c8c190c7c69f00
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:03:17Z
publishDate 2009-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-c1e237038a554985a0c8c190c7c69f002024-03-07T14:45:40ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502009-01-01DMTCS Proceedings vol. AK,...Proceedings10.46298/dmtcs.26842684$q$-Hook formula of Gansner type for a generalized Young diagramKento Nakada0Wakkanai Hokusei Gakuen UniversityThe purpose of this paper is to present the $q$-hook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give a generalization of P. MacMahon's identity as an application of the $q$-hook formula.https://dmtcs.episciences.org/2684/pdfgeneralized young diagramstrace generating functions$q$-hook formulakac-moody lie algebrap. macmahon's identity[math.math-co] mathematics [math]/combinatorics [math.co][info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
spellingShingle Kento Nakada
$q$-Hook formula of Gansner type for a generalized Young diagram
Discrete Mathematics & Theoretical Computer Science
generalized young diagrams
trace generating functions
$q$-hook formula
kac-moody lie algebra
p. macmahon's identity
[math.math-co] mathematics [math]/combinatorics [math.co]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
title $q$-Hook formula of Gansner type for a generalized Young diagram
title_full $q$-Hook formula of Gansner type for a generalized Young diagram
title_fullStr $q$-Hook formula of Gansner type for a generalized Young diagram
title_full_unstemmed $q$-Hook formula of Gansner type for a generalized Young diagram
title_short $q$-Hook formula of Gansner type for a generalized Young diagram
title_sort q hook formula of gansner type for a generalized young diagram
topic generalized young diagrams
trace generating functions
$q$-hook formula
kac-moody lie algebra
p. macmahon's identity
[math.math-co] mathematics [math]/combinatorics [math.co]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
url https://dmtcs.episciences.org/2684/pdf
work_keys_str_mv AT kentonakada qhookformulaofgansnertypeforageneralizedyoungdiagram