Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors

In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechani...

Full description

Bibliographic Details
Main Authors: Cuong M. Nguyen, Pavan Kumar Kota, Minh Q. Nguyen, Souvik Dubey, Smitha Rao, Jeffrey Mays, J.-C. Chiao
Format: Article
Language:English
Published: MDPI AG 2015-09-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/15/9/24553
Description
Summary:In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.
ISSN:1424-8220