Efficient Scale-Resolving Simulations of Open Cavity Flows for Straight and Sideslip Conditions

This study aims to facilitate a physical understanding of resonating cavity flows with efficient numerical treatments of turbulence. It reinforces the efficiency and affordability of scale-adaptive numerical techniques for simulating open cavity flows with a separated shear layer consisting of a wid...

Full description

Bibliographic Details
Main Authors: Karthick Rajkumar, Eike Tangermann, Markus Klein
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/8/8/227
Description
Summary:This study aims to facilitate a physical understanding of resonating cavity flows with efficient numerical treatments of turbulence. It reinforces the efficiency and affordability of scale-adaptive numerical techniques for simulating open cavity flows with a separated shear layer consisting of a wide range of flow scales. Visualization of the resonant modes occurring due to the acoustic feedback loop aids in a better understanding of large-scale flow oscillations. Under this scope, scale-adaptive simulation (SAS) based on the <i>k</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> SST RANS model with different turbulence treatments has been studied for an open cavity configuration with a length-to-depth <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>L</mi><mo>/</mo><mi>D</mi><mo>)</mo></mrow></semantics></math></inline-formula> ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.7</mn></mrow></semantics></math></inline-formula> featuring Mach number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>a</mi></mrow></semantics></math></inline-formula>) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.8</mn></mrow></semantics></math></inline-formula> and Reynolds number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula>) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>12</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></semantics></math></inline-formula>. It is shown that the essential cavity flow physics has been captured using the SAS approach with more than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90</mn><mo>%</mo></mrow></semantics></math></inline-formula> improved computational efficiency compared to commonly used hybrid RANS-LES approaches. In addition, wall-modeled SAS when supplemented with an artificial forcing concept to trigger the model provides very good spectral estimates comparable with hybrid RANS-LES results. Following the validation of numerical approaches, the directional dependence of the cavity resonance is investigated under asymmetric flow conditions, and spanwise interference of waves due to the lateral walls of the cavity has been observed.
ISSN:2311-5521