Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
<p>The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/21/6455/2021/acp-21-6455-2021.pdf |
_version_ | 1819294251125571584 |
---|---|
author | C. Córdoba-Jabonero M. Sicard M. Sicard M.-Á. López-Cayuela A. Ansmann A. Comerón M.-P. Zorzano M.-P. Zorzano A. Rodríguez-Gómez C. Muñoz-Porcar |
author_facet | C. Córdoba-Jabonero M. Sicard M. Sicard M.-Á. López-Cayuela A. Ansmann A. Comerón M.-P. Zorzano M.-P. Zorzano A. Rodríguez-Gómez C. Muñoz-Porcar |
author_sort | C. Córdoba-Jabonero |
collection | DOAJ |
description | <p>The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over
Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and
30 June), 1350 <span class="inline-formula">km</span> apart from each other. Major data are obtained from AERONET and polarised Micro-Pulse Lidar (P-MPL) observations. Modelling is used to describe the
different dust pathways, as observed at both sites. The coarse dust (Dc) and fine dust (Df) components (with total dust, DD <span class="inline-formula">=</span> Dc <span class="inline-formula">+</span> Df) are
identified in the profiles of the total particle backscatter coefficient using the POLIPHON (POlarisation LIdar PHOtometer Networking) method in synergy with P-MPL measurements. This
information is used to calculate the relative mass loading and the centre-of-mass height, as well as the contribution of each dust mode to the total dust DRE. Several aspects of the ageing of dust are put forward. The mean dust optical depth and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a56850e60720a52a6b48741497351d0b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00001.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00001.png"/></svg:svg></span></span> ratios are,
respectively, 0.153 and 24 % in Barcelona and 0.039 and 38 % in Leipzig; this Df increase in Leipzig is attributed to a longer dust
transport path in comparison to Barcelona. The dust produced a cooling effect on the surface with a mean daily DRE of <span class="inline-formula">−</span>9.1 and
<span class="inline-formula">−</span>2.5 <span class="inline-formula">W m<sup>−2</sup></span>, respectively, in Barcelona and Leipzig, but the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bf5dad54d0de86cf1c12c557a6663780"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00002.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00002.png"/></svg:svg></span></span> DRE ratio is larger for Leipzig (52 %) than for Barcelona
(37 %). Cooling is also observed at the top of the atmosphere (TOA), although less intense than on the surface. However, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fdc4b994617b6ed0c833030e45e44050"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00003.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00003.png"/></svg:svg></span></span> DRE ratio
at the TOA is even higher (45 % and 60 %, respectively, in Barcelona and Leipzig) than on the surface. Despite the predominance of Dc
particles under dusty conditions, the SW radiative impact of Df particles can be comparable to, even higher than, that induced by the Dc ones. In
particular, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="20fa1b74331b52f32a78cc1e0bd647be"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00004.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00004.png"/></svg:svg></span></span> DRE ratio in Barcelona increases by <span class="inline-formula">+</span>2.4 <span class="inline-formula">% d<sup>−1</sup></span> (surface) and <span class="inline-formula">+</span>2.9 <span class="inline-formula">% d<sup>−1</sup></span> (TOA) during the dusty
period. This study is completed by a second paper about the long-wave and net radiative effects. These results are especially relevant for the next
ESA EarthCARE mission (planned in 2022) as it is devoted to aerosol–cloud–radiation interaction research.</p> |
first_indexed | 2024-12-24T04:23:21Z |
format | Article |
id | doaj.art-c1f9212353ed4626a576a7e8c390be98 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-24T04:23:21Z |
publishDate | 2021-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-c1f9212353ed4626a576a7e8c390be982022-12-21T17:15:43ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-04-01216455647910.5194/acp-21-6455-2021Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effectC. Córdoba-Jabonero0M. Sicard1M. Sicard2M.-Á. López-Cayuela3A. Ansmann4A. Comerón5M.-P. Zorzano6M.-P. Zorzano7A. Rodríguez-Gómez8C. Muñoz-Porcar9Instituto Nacional de Técnica Aeroespacial (INTA), Atmospheric Research and Instrumentation Branch, Torrejón de Ardoz, 28850 Madrid, SpainCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainCiències i Tecnologies de l'Espai-Centre de Recerca de l'Aeronàutica i de l'Espai, Institut d'Estudis Espacials de Catalunya (CTE-CRAE/IEEC), Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainInstituto Nacional de Técnica Aeroespacial (INTA), Atmospheric Research and Instrumentation Branch, Torrejón de Ardoz, 28850 Madrid, SpainRemote Sensing of Atmospheric Processes Department, Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, GermanyCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainCentro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, km. 4, Torrejón de Ardoz, 28850 Madrid, SpainSchool of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, UKCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain<p>The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and 30 June), 1350 <span class="inline-formula">km</span> apart from each other. Major data are obtained from AERONET and polarised Micro-Pulse Lidar (P-MPL) observations. Modelling is used to describe the different dust pathways, as observed at both sites. The coarse dust (Dc) and fine dust (Df) components (with total dust, DD <span class="inline-formula">=</span> Dc <span class="inline-formula">+</span> Df) are identified in the profiles of the total particle backscatter coefficient using the POLIPHON (POlarisation LIdar PHOtometer Networking) method in synergy with P-MPL measurements. This information is used to calculate the relative mass loading and the centre-of-mass height, as well as the contribution of each dust mode to the total dust DRE. Several aspects of the ageing of dust are put forward. The mean dust optical depth and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a56850e60720a52a6b48741497351d0b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00001.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00001.png"/></svg:svg></span></span> ratios are, respectively, 0.153 and 24 % in Barcelona and 0.039 and 38 % in Leipzig; this Df increase in Leipzig is attributed to a longer dust transport path in comparison to Barcelona. The dust produced a cooling effect on the surface with a mean daily DRE of <span class="inline-formula">−</span>9.1 and <span class="inline-formula">−</span>2.5 <span class="inline-formula">W m<sup>−2</sup></span>, respectively, in Barcelona and Leipzig, but the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bf5dad54d0de86cf1c12c557a6663780"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00002.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00002.png"/></svg:svg></span></span> DRE ratio is larger for Leipzig (52 %) than for Barcelona (37 %). Cooling is also observed at the top of the atmosphere (TOA), although less intense than on the surface. However, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fdc4b994617b6ed0c833030e45e44050"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00003.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00003.png"/></svg:svg></span></span> DRE ratio at the TOA is even higher (45 % and 60 %, respectively, in Barcelona and Leipzig) than on the surface. Despite the predominance of Dc particles under dusty conditions, the SW radiative impact of Df particles can be comparable to, even higher than, that induced by the Dc ones. In particular, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="20fa1b74331b52f32a78cc1e0bd647be"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00004.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00004.png"/></svg:svg></span></span> DRE ratio in Barcelona increases by <span class="inline-formula">+</span>2.4 <span class="inline-formula">% d<sup>−1</sup></span> (surface) and <span class="inline-formula">+</span>2.9 <span class="inline-formula">% d<sup>−1</sup></span> (TOA) during the dusty period. This study is completed by a second paper about the long-wave and net radiative effects. These results are especially relevant for the next ESA EarthCARE mission (planned in 2022) as it is devoted to aerosol–cloud–radiation interaction research.</p>https://acp.copernicus.org/articles/21/6455/2021/acp-21-6455-2021.pdf |
spellingShingle | C. Córdoba-Jabonero M. Sicard M. Sicard M.-Á. López-Cayuela A. Ansmann A. Comerón M.-P. Zorzano M.-P. Zorzano A. Rodríguez-Gómez C. Muñoz-Porcar Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect Atmospheric Chemistry and Physics |
title | Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect |
title_full | Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect |
title_fullStr | Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect |
title_full_unstemmed | Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect |
title_short | Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect |
title_sort | aerosol radiative impact during the summer 2019 heatwave produced partly by an inter continental saharan dust outbreak part 1 short wave dust direct radiative effect |
url | https://acp.copernicus.org/articles/21/6455/2021/acp-21-6455-2021.pdf |
work_keys_str_mv | AT ccordobajabonero aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT msicard aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT msicard aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT malopezcayuela aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT aansmann aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT acomeron aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT mpzorzano aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT mpzorzano aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT arodriguezgomez aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect AT cmunozporcar aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect |