Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect

<p>The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and...

Full description

Bibliographic Details
Main Authors: C. Córdoba-Jabonero, M. Sicard, M.-Á. López-Cayuela, A. Ansmann, A. Comerón, M.-P. Zorzano, A. Rodríguez-Gómez, C. Muñoz-Porcar
Format: Article
Language:English
Published: Copernicus Publications 2021-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/6455/2021/acp-21-6455-2021.pdf
_version_ 1819294251125571584
author C. Córdoba-Jabonero
M. Sicard
M. Sicard
M.-Á. López-Cayuela
A. Ansmann
A. Comerón
M.-P. Zorzano
M.-P. Zorzano
A. Rodríguez-Gómez
C. Muñoz-Porcar
author_facet C. Córdoba-Jabonero
M. Sicard
M. Sicard
M.-Á. López-Cayuela
A. Ansmann
A. Comerón
M.-P. Zorzano
M.-P. Zorzano
A. Rodríguez-Gómez
C. Muñoz-Porcar
author_sort C. Córdoba-Jabonero
collection DOAJ
description <p>The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and 30 June), 1350 <span class="inline-formula">km</span> apart from each other. Major data are obtained from AERONET and polarised Micro-Pulse Lidar (P-MPL) observations. Modelling is used to describe the different dust pathways, as observed at both sites. The coarse dust (Dc) and fine dust (Df) components (with total dust, DD <span class="inline-formula">=</span> Dc <span class="inline-formula">+</span> Df) are identified in the profiles of the total particle backscatter coefficient using the POLIPHON (POlarisation LIdar PHOtometer Networking) method in synergy with P-MPL measurements. This information is used to calculate the relative mass loading and the centre-of-mass height, as well as the contribution of each dust mode to the total dust DRE. Several aspects of the ageing of dust are put forward. The mean dust optical depth and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a56850e60720a52a6b48741497351d0b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00001.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00001.png"/></svg:svg></span></span> ratios are, respectively, 0.153 and 24 % in Barcelona and 0.039 and 38 % in Leipzig; this Df increase in Leipzig is attributed to a longer dust transport path in comparison to Barcelona. The dust produced a cooling effect on the surface with a mean daily DRE of <span class="inline-formula">−</span>9.1 and <span class="inline-formula">−</span>2.5 <span class="inline-formula">W m<sup>−2</sup></span>, respectively, in Barcelona and Leipzig, but the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bf5dad54d0de86cf1c12c557a6663780"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00002.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00002.png"/></svg:svg></span></span> DRE ratio is larger for Leipzig (52 %) than for Barcelona (37 %). Cooling is also observed at the top of the atmosphere (TOA), although less intense than on the surface. However, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fdc4b994617b6ed0c833030e45e44050"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00003.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00003.png"/></svg:svg></span></span> DRE ratio at the TOA is even higher (45 % and 60 %, respectively, in Barcelona and Leipzig) than on the surface. Despite the predominance of Dc particles under dusty conditions, the SW radiative impact of Df particles can be comparable to, even higher than, that induced by the Dc ones. In particular, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="20fa1b74331b52f32a78cc1e0bd647be"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00004.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00004.png"/></svg:svg></span></span> DRE ratio in Barcelona increases by <span class="inline-formula">+</span>2.4 <span class="inline-formula">% d<sup>−1</sup></span> (surface) and <span class="inline-formula">+</span>2.9 <span class="inline-formula">% d<sup>−1</sup></span> (TOA) during the dusty period. This study is completed by a second paper about the long-wave and net radiative effects. These results are especially relevant for the next ESA EarthCARE mission (planned in 2022) as it is devoted to aerosol–cloud–radiation interaction research.</p>
first_indexed 2024-12-24T04:23:21Z
format Article
id doaj.art-c1f9212353ed4626a576a7e8c390be98
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-24T04:23:21Z
publishDate 2021-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-c1f9212353ed4626a576a7e8c390be982022-12-21T17:15:43ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-04-01216455647910.5194/acp-21-6455-2021Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effectC. Córdoba-Jabonero0M. Sicard1M. Sicard2M.-Á. López-Cayuela3A. Ansmann4A. Comerón5M.-P. Zorzano6M.-P. Zorzano7A. Rodríguez-Gómez8C. Muñoz-Porcar9Instituto Nacional de Técnica Aeroespacial (INTA), Atmospheric Research and Instrumentation Branch, Torrejón de Ardoz, 28850 Madrid, SpainCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainCiències i Tecnologies de l'Espai-Centre de Recerca de l'Aeronàutica i de l'Espai, Institut d'Estudis Espacials de Catalunya (CTE-CRAE/IEEC), Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainInstituto Nacional de Técnica Aeroespacial (INTA), Atmospheric Research and Instrumentation Branch, Torrejón de Ardoz, 28850 Madrid, SpainRemote Sensing of Atmospheric Processes Department, Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, GermanyCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainCentro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, km. 4, Torrejón de Ardoz, 28850 Madrid, SpainSchool of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, UKCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, SpainCommSensLab, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain<p>The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and 30 June), 1350 <span class="inline-formula">km</span> apart from each other. Major data are obtained from AERONET and polarised Micro-Pulse Lidar (P-MPL) observations. Modelling is used to describe the different dust pathways, as observed at both sites. The coarse dust (Dc) and fine dust (Df) components (with total dust, DD <span class="inline-formula">=</span> Dc <span class="inline-formula">+</span> Df) are identified in the profiles of the total particle backscatter coefficient using the POLIPHON (POlarisation LIdar PHOtometer Networking) method in synergy with P-MPL measurements. This information is used to calculate the relative mass loading and the centre-of-mass height, as well as the contribution of each dust mode to the total dust DRE. Several aspects of the ageing of dust are put forward. The mean dust optical depth and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a56850e60720a52a6b48741497351d0b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00001.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00001.png"/></svg:svg></span></span> ratios are, respectively, 0.153 and 24 % in Barcelona and 0.039 and 38 % in Leipzig; this Df increase in Leipzig is attributed to a longer dust transport path in comparison to Barcelona. The dust produced a cooling effect on the surface with a mean daily DRE of <span class="inline-formula">−</span>9.1 and <span class="inline-formula">−</span>2.5 <span class="inline-formula">W m<sup>−2</sup></span>, respectively, in Barcelona and Leipzig, but the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bf5dad54d0de86cf1c12c557a6663780"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00002.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00002.png"/></svg:svg></span></span> DRE ratio is larger for Leipzig (52 %) than for Barcelona (37 %). Cooling is also observed at the top of the atmosphere (TOA), although less intense than on the surface. However, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fdc4b994617b6ed0c833030e45e44050"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00003.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00003.png"/></svg:svg></span></span> DRE ratio at the TOA is even higher (45 % and 60 %, respectively, in Barcelona and Leipzig) than on the surface. Despite the predominance of Dc particles under dusty conditions, the SW radiative impact of Df particles can be comparable to, even higher than, that induced by the Dc ones. In particular, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Df</mi><mo>/</mo><mi mathvariant="normal">DD</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="20fa1b74331b52f32a78cc1e0bd647be"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-6455-2021-ie00004.svg" width="35pt" height="14pt" src="acp-21-6455-2021-ie00004.png"/></svg:svg></span></span> DRE ratio in Barcelona increases by <span class="inline-formula">+</span>2.4 <span class="inline-formula">% d<sup>−1</sup></span> (surface) and <span class="inline-formula">+</span>2.9 <span class="inline-formula">% d<sup>−1</sup></span> (TOA) during the dusty period. This study is completed by a second paper about the long-wave and net radiative effects. These results are especially relevant for the next ESA EarthCARE mission (planned in 2022) as it is devoted to aerosol–cloud–radiation interaction research.</p>https://acp.copernicus.org/articles/21/6455/2021/acp-21-6455-2021.pdf
spellingShingle C. Córdoba-Jabonero
M. Sicard
M. Sicard
M.-Á. López-Cayuela
A. Ansmann
A. Comerón
M.-P. Zorzano
M.-P. Zorzano
A. Rodríguez-Gómez
C. Muñoz-Porcar
Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
Atmospheric Chemistry and Physics
title Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
title_full Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
title_fullStr Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
title_full_unstemmed Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
title_short Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
title_sort aerosol radiative impact during the summer 2019 heatwave produced partly by an inter continental saharan dust outbreak part 1 short wave dust direct radiative effect
url https://acp.copernicus.org/articles/21/6455/2021/acp-21-6455-2021.pdf
work_keys_str_mv AT ccordobajabonero aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT msicard aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT msicard aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT malopezcayuela aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT aansmann aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT acomeron aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT mpzorzano aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT mpzorzano aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT arodriguezgomez aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect
AT cmunozporcar aerosolradiativeimpactduringthesummer2019heatwaveproducedpartlybyanintercontinentalsaharandustoutbreakpart1shortwavedustdirectradiativeeffect