Nano-Treating Promoted Natural Aging Al-Zn-Mg-Cu Alloys

Natural aging reduces the cost of alloy manufacturing while saving input energy but takes too long to complete for most Al-Zn-Mg-Cu alloys. Research has proved that nano-treating can facilitate precipitation in heat-treatable alloys. In this study, nano-treated Al-6.0Zn-2.6Mg-xCu samples containing...

Full description

Bibliographic Details
Main Authors: Jie Yuan, Qian Liu, Shuaihang Pan, Mingjie Xu, Narayanan Murali, Jiaxing Li, Shuai Wang, Xiaochun Li
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Journal of Composites Science
Subjects:
Online Access:https://www.mdpi.com/2504-477X/6/4/114
Description
Summary:Natural aging reduces the cost of alloy manufacturing while saving input energy but takes too long to complete for most Al-Zn-Mg-Cu alloys. Research has proved that nano-treating can facilitate precipitation in heat-treatable alloys. In this study, nano-treated Al-6.0Zn-2.6Mg-xCu samples containing different Cu contents were fabricated to investigate the influence of nano-treating on natural aging. TiC nanoparticles were used for nano-treating. Three cooling conditions after solution treatment (water quenching, air cooling, and as-cast) were investigated to check their quench sensitivities. The study shows the alloy’s microstructure was modified by nano-treating, and the growth of dendritic arms was inhibited. Compared to the control samples, nano-treating also increased both the microhardness and tensile strength of the alloy after natural aging. Out of the three different solution treatments, the air-cooled samples presented the highest UTS and microhardness values. The precipitation process was sped up by nano-treating by approximately 50%, and a higher volume fraction of GPII zones were formed in the nano-treated samples. HRTEM results also confirm the formation of more GPI and GPII zones in a nano-treated samples. With the help of natural aging, the Al-6.0Zn-2.6Mg-0.5Cu alloy reached a UTS of 455.7 ± 40.2 MPa and elongation of 4.52 ± 1.34% which makes it a great candidate for a naturally aged Al-Zn-Mg-Cu alloy.
ISSN:2504-477X