The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity

Minimax fractional semi-infinite programming is an important research direction for semi-infinite programming, and has a wide range of applications, such as military allocation problems, economic theory, cooperative games, and other fields. Convexity theory plays a key role in many aspects of mathem...

Full description

Bibliographic Details
Main Authors: Hong Yang, Angang Cui
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/20/4240
_version_ 1797573112569528320
author Hong Yang
Angang Cui
author_facet Hong Yang
Angang Cui
author_sort Hong Yang
collection DOAJ
description Minimax fractional semi-infinite programming is an important research direction for semi-infinite programming, and has a wide range of applications, such as military allocation problems, economic theory, cooperative games, and other fields. Convexity theory plays a key role in many aspects of mathematical programming and is the foundation of mathematical programming research. The relevant theories of semi-infinite programming based on different types of convex functions have their own applicable scope and limitations. It is of great value to study semi-infinite programming on the basis of more generalized convex functions and obtain more general results. In this paper, we defined a new type of generalized convex function, based on the concept of the <i>K</i>−directional derivative, that is, uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>invex, strictly uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>invex, uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>pseudoinvex, strictly uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>pseudoinvex, uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>quasiinvex and weakly uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>quasiinvex function. Then, we studied a class of non-smooth minimax fractional semi-infinite programming problems involving this generalized convexity and obtained sufficient optimality conditions.
first_indexed 2024-03-10T21:05:03Z
format Article
id doaj.art-c22a8899b67848439863140021e255bf
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T21:05:03Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c22a8899b67848439863140021e255bf2023-11-19T17:13:09ZengMDPI AGMathematics2227-73902023-10-011120424010.3390/math11204240The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−InvexityHong Yang0Angang Cui1School of Mathematics and Statistics, Yulin University, Yulin 719000, ChinaSchool of Mathematics and Statistics, Yulin University, Yulin 719000, ChinaMinimax fractional semi-infinite programming is an important research direction for semi-infinite programming, and has a wide range of applications, such as military allocation problems, economic theory, cooperative games, and other fields. Convexity theory plays a key role in many aspects of mathematical programming and is the foundation of mathematical programming research. The relevant theories of semi-infinite programming based on different types of convex functions have their own applicable scope and limitations. It is of great value to study semi-infinite programming on the basis of more generalized convex functions and obtain more general results. In this paper, we defined a new type of generalized convex function, based on the concept of the <i>K</i>−directional derivative, that is, uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>invex, strictly uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>invex, uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>pseudoinvex, strictly uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>pseudoinvex, uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>quasiinvex and weakly uniform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>B</mi><mi>K</mi></msub><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo></mrow></semantics></math></inline-formula>quasiinvex function. Then, we studied a class of non-smooth minimax fractional semi-infinite programming problems involving this generalized convexity and obtained sufficient optimality conditions.https://www.mdpi.com/2227-7390/11/20/4240non-smooth programmingfractional semi-infinite programming<i>K</i>−directional derivativeuniform (<i>B<sub>K</sub></i>,<i>ρ</i>)−invexityoptimality conditions
spellingShingle Hong Yang
Angang Cui
The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity
Mathematics
non-smooth programming
fractional semi-infinite programming
<i>K</i>−directional derivative
uniform (<i>B<sub>K</sub></i>,<i>ρ</i>)−invexity
optimality conditions
title The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity
title_full The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity
title_fullStr The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity
title_full_unstemmed The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity
title_short The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (<i>B<sub>K</sub>,ρ</i>)−Invexity
title_sort sufficiency of solutions for non smooth minimax fractional semi infinite programming with i b sub k sub ρ i invexity
topic non-smooth programming
fractional semi-infinite programming
<i>K</i>−directional derivative
uniform (<i>B<sub>K</sub></i>,<i>ρ</i>)−invexity
optimality conditions
url https://www.mdpi.com/2227-7390/11/20/4240
work_keys_str_mv AT hongyang thesufficiencyofsolutionsfornonsmoothminimaxfractionalsemiinfiniteprogrammingwithibsubksubriinvexity
AT angangcui thesufficiencyofsolutionsfornonsmoothminimaxfractionalsemiinfiniteprogrammingwithibsubksubriinvexity
AT hongyang sufficiencyofsolutionsfornonsmoothminimaxfractionalsemiinfiniteprogrammingwithibsubksubriinvexity
AT angangcui sufficiencyofsolutionsfornonsmoothminimaxfractionalsemiinfiniteprogrammingwithibsubksubriinvexity