Network response to disturbances in large sand-bed braided rivers

The reach-scale effects of human-induced disturbances on the channel network in large braided rivers are a challenge to understand and to predict. In this study, we simulated different types of disturbances in a large braided river to get insight into the propagation of disturbances through a braid...

Full description

Bibliographic Details
Main Authors: F. Schuurman, M. G. Kleinhans, H. Middelkoop
Format: Article
Language:English
Published: Copernicus Publications 2016-01-01
Series:Earth Surface Dynamics
Online Access:http://www.earth-surf-dynam.net/4/25/2016/esurf-4-25-2016.pdf
Description
Summary:The reach-scale effects of human-induced disturbances on the channel network in large braided rivers are a challenge to understand and to predict. In this study, we simulated different types of disturbances in a large braided river to get insight into the propagation of disturbances through a braided channel network. The results showed that the disturbances initiate an instability that propagates in the downstream direction by means of alteration of water and sediment division at bifurcations. These adjustments of the bifurcations change the migration and shape of bars, with a feedback to the upstream bifurcation and alteration of the approaching flow to the downstream bifurcation. This way, the morphological effect of a disturbance amplifies in the downstream direction. Thus, the interplay of bifurcation instability and asymmetrical reshaping of bars was found to be essential for propagation of the effects of a disturbance. The study also demonstrated that the large-scale bar statistics are hardly affected.
ISSN:2196-6311
2196-632X