Hydrodynamic Interaction of Two Self-Propelled Fish Swimming in a Tandem Arrangement

Collective locomotion in biological systems is ubiquitous and attracts much attention, and there are complex hydrodynamics involved. The hydrodynamic interaction for fish schooling is examined using two-dimensional numerical simulations of a pair of self-propelled swimming fish in this paper. The ef...

Full description

Bibliographic Details
Main Authors: Dewu Yang, Jie Wu
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/7/6/208
Description
Summary:Collective locomotion in biological systems is ubiquitous and attracts much attention, and there are complex hydrodynamics involved. The hydrodynamic interaction for fish schooling is examined using two-dimensional numerical simulations of a pair of self-propelled swimming fish in this paper. The effects of different parameters on swimming speed gain and energy-saving efficiency are investigated by adjusting swimming parameters (initial separation distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mn>0</mn></msub></semantics></math></inline-formula>, tail beat amplitude <i>A</i>, body wavelength <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, and period of oscillation <i>T</i>) at different phase difference <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>ϕ</mi></mrow></semantics></math></inline-formula> between two fish. The hydrodynamic interaction performance of fish swimming in a tandem arrangement is analyzed with the help of the instantaneous vorticity contours, pressure contours, and mean work done. Using elementary hydrodynamic arguments, a unifying mechanistic principle, which characterizes the fish locomotion by deriving a scaling relation that links swimming speed <i>u</i> to body kinematics (<i>A</i>, <i>T</i>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>), arrangement of formation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mn>0</mn></msub></semantics></math></inline-formula>), and fluid properties (kinematic viscosity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>), is revealed. It is shown that there are some certain scaling laws between similarity criterion number (Reynolds number (Re) and Strouhal number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>t</mi></mrow></semantics></math></inline-formula>)) and energy-consuming coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>E</mi></msub></semantics></math></inline-formula>) under different parameters (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Δ</mo></semantics></math></inline-formula>). In particular, a generality in the relationships of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>t</mi></mrow></semantics></math></inline-formula>–Re and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>E</mi></msub></semantics></math></inline-formula>–(Re <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>·</mo><mo>Δ</mo></mrow></semantics></math></inline-formula>) can emerge despite significant disparities in locomotory performance.
ISSN:2311-5521