Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass

Crystallization is a major challenge in metallic glass production, and predictive models may aid the development of controlled microstructures. This work describes a modeling strategy of nucleation, growth and the dissolution of crystals in a multicomponent glass-forming system. The numerical model...

Full description

Bibliographic Details
Main Authors: Anders Ericsson, Martin Fisk
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/12/5/867
_version_ 1797497870167834624
author Anders Ericsson
Martin Fisk
author_facet Anders Ericsson
Martin Fisk
author_sort Anders Ericsson
collection DOAJ
description Crystallization is a major challenge in metallic glass production, and predictive models may aid the development of controlled microstructures. This work describes a modeling strategy of nucleation, growth and the dissolution of crystals in a multicomponent glass-forming system. The numerical model is based on classical nucleation theory in combination with a multicomponent diffusion-controlled growth model that is valid for high supersaturation. The required thermodynamic properties are obtained by coupling the model to a CALPHAD database using the Al-Cu-Zr system as a demonstrator. The crystallization of intermetallic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mfenced separators="" open="(" close=")"><mi>Al</mi><mo>,</mo><mi>Cu</mi></mfenced><mi>m</mi></msub><msub><mi>Zr</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> phases from the undercooled liquid phase were simulated under isothermal as well as rapid heating and cooling conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>–</mo></mrow><msup><mn>10</mn><mn>6</mn></msup><mspace width="4pt"></mspace><msup><mi>Ks</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>). The obtained time–temperature transformation and continuous-heating/cooling transformation diagrams agree satisfactorily with the experimental data over a wide temperature range, thereby, demonstrating the predictability of the modeling approach. A comparison of the simulation results and experimental data is discussed.
first_indexed 2024-03-10T03:25:24Z
format Article
id doaj.art-c2508c0631494a06aa32b1e8701234b1
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-03-10T03:25:24Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-c2508c0631494a06aa32b1e8701234b12023-11-23T12:10:35ZengMDPI AGMetals2075-47012022-05-0112586710.3390/met12050867Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic GlassAnders Ericsson0Martin Fisk1Division of Solid Mechanics, Lund University, P.O. Box 118, SE 22100 Lund, SwedenDivision of Solid Mechanics, Lund University, P.O. Box 118, SE 22100 Lund, SwedenCrystallization is a major challenge in metallic glass production, and predictive models may aid the development of controlled microstructures. This work describes a modeling strategy of nucleation, growth and the dissolution of crystals in a multicomponent glass-forming system. The numerical model is based on classical nucleation theory in combination with a multicomponent diffusion-controlled growth model that is valid for high supersaturation. The required thermodynamic properties are obtained by coupling the model to a CALPHAD database using the Al-Cu-Zr system as a demonstrator. The crystallization of intermetallic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mfenced separators="" open="(" close=")"><mi>Al</mi><mo>,</mo><mi>Cu</mi></mfenced><mi>m</mi></msub><msub><mi>Zr</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> phases from the undercooled liquid phase were simulated under isothermal as well as rapid heating and cooling conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>–</mo></mrow><msup><mn>10</mn><mn>6</mn></msup><mspace width="4pt"></mspace><msup><mi>Ks</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>). The obtained time–temperature transformation and continuous-heating/cooling transformation diagrams agree satisfactorily with the experimental data over a wide temperature range, thereby, demonstrating the predictability of the modeling approach. A comparison of the simulation results and experimental data is discussed.https://www.mdpi.com/2075-4701/12/5/867metallic glassAl-Cu-ZrcrystallizationCALPHAD
spellingShingle Anders Ericsson
Martin Fisk
Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass
Metals
metallic glass
Al-Cu-Zr
crystallization
CALPHAD
title Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass
title_full Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass
title_fullStr Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass
title_full_unstemmed Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass
title_short Modeling of Diffusion-Controlled Crystallization Kinetics in Al-Cu-Zr Metallic Glass
title_sort modeling of diffusion controlled crystallization kinetics in al cu zr metallic glass
topic metallic glass
Al-Cu-Zr
crystallization
CALPHAD
url https://www.mdpi.com/2075-4701/12/5/867
work_keys_str_mv AT andersericsson modelingofdiffusioncontrolledcrystallizationkineticsinalcuzrmetallicglass
AT martinfisk modelingofdiffusioncontrolledcrystallizationkineticsinalcuzrmetallicglass