Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals

In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained ine...

Full description

Bibliographic Details
Main Authors: XuRan Hai, ShuHong Wang
Format: Article
Language:English
Published: AIMS Press 2021-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021666?viewType=HTML
_version_ 1818914605896826880
author XuRan Hai
ShuHong Wang
author_facet XuRan Hai
ShuHong Wang
author_sort XuRan Hai
collection DOAJ
description In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.
first_indexed 2024-12-19T23:49:03Z
format Article
id doaj.art-c256bf33d7534e6199e61b874859c690
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-19T23:49:03Z
publishDate 2021-08-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-c256bf33d7534e6199e61b874859c6902022-12-21T20:01:13ZengAIMS PressAIMS Mathematics2473-69882021-08-01610114941150710.3934/math.2021666Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integralsXuRan Hai0ShuHong Wang1College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028000, ChinaCollege of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028000, ChinaIn the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.https://www.aimspress.com/article/doi/10.3934/math.2021666?viewType=HTMLhermite-hadamard inequalityconvex functionerdélyi-kober fractional integralsriemann-liouville fractional integralserror estimations
spellingShingle XuRan Hai
ShuHong Wang
Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
AIMS Mathematics
hermite-hadamard inequality
convex function
erdélyi-kober fractional integrals
riemann-liouville fractional integrals
error estimations
title Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
title_full Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
title_fullStr Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
title_full_unstemmed Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
title_short Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
title_sort hermite hadamard type inequalities based on the erdelyi kober fractional integrals
topic hermite-hadamard inequality
convex function
erdélyi-kober fractional integrals
riemann-liouville fractional integrals
error estimations
url https://www.aimspress.com/article/doi/10.3934/math.2021666?viewType=HTML
work_keys_str_mv AT xuranhai hermitehadamardtypeinequalitiesbasedontheerdelyikoberfractionalintegrals
AT shuhongwang hermitehadamardtypeinequalitiesbasedontheerdelyikoberfractionalintegrals