Machine learning of superconducting critical temperature from Eliashberg theory

Abstract The Eliashberg theory of superconductivity accounts for the fundamental physics of conventional superconductors, including the retardation of the interaction and the Coulomb pseudopotential, to predict the critical temperature T c. McMillan, Allen, and Dynes derived approximate closed-form...

Full description

Bibliographic Details
Main Authors: S. R. Xie, Y. Quan, A. C. Hire, B. Deng, J. M. DeStefano, I. Salinas, U. S. Shah, L. Fanfarillo, J. Lim, J. Kim, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, R. G. Hennig
Format: Article
Language:English
Published: Nature Portfolio 2022-01-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-021-00666-7
_version_ 1819281552098459648
author S. R. Xie
Y. Quan
A. C. Hire
B. Deng
J. M. DeStefano
I. Salinas
U. S. Shah
L. Fanfarillo
J. Lim
J. Kim
G. R. Stewart
J. J. Hamlin
P. J. Hirschfeld
R. G. Hennig
author_facet S. R. Xie
Y. Quan
A. C. Hire
B. Deng
J. M. DeStefano
I. Salinas
U. S. Shah
L. Fanfarillo
J. Lim
J. Kim
G. R. Stewart
J. J. Hamlin
P. J. Hirschfeld
R. G. Hennig
author_sort S. R. Xie
collection DOAJ
description Abstract The Eliashberg theory of superconductivity accounts for the fundamental physics of conventional superconductors, including the retardation of the interaction and the Coulomb pseudopotential, to predict the critical temperature T c. McMillan, Allen, and Dynes derived approximate closed-form expressions for the critical temperature within this theory, which depends on the electron–phonon spectral function α 2 F(ω). Here we show that modern machine-learning techniques can substantially improve these formulae, accounting for more general shapes of the α 2 F function. Using symbolic regression and the SISSO framework, together with a database of artificially generated α 2 F functions and numerical solutions of the Eliashberg equations, we derive a formula for T c that performs as well as Allen–Dynes for low-T c superconductors and substantially better for higher-T c ones. This corrects the systematic underestimation of T c while reproducing the physical constraints originally outlined by Allen and Dynes. This equation should replace the Allen–Dynes formula for the prediction of higher-temperature superconductors.
first_indexed 2024-12-24T01:01:30Z
format Article
id doaj.art-c25d0db147d04280aefda86430a4ab02
institution Directory Open Access Journal
issn 2057-3960
language English
last_indexed 2024-12-24T01:01:30Z
publishDate 2022-01-01
publisher Nature Portfolio
record_format Article
series npj Computational Materials
spelling doaj.art-c25d0db147d04280aefda86430a4ab022022-12-21T17:23:21ZengNature Portfolionpj Computational Materials2057-39602022-01-01811810.1038/s41524-021-00666-7Machine learning of superconducting critical temperature from Eliashberg theoryS. R. Xie0Y. Quan1A. C. Hire2B. Deng3J. M. DeStefano4I. Salinas5U. S. Shah6L. Fanfarillo7J. Lim8J. Kim9G. R. Stewart10J. J. Hamlin11P. J. Hirschfeld12R. G. Hennig13Department of Materials Science and Engineering, University of FloridaDepartment of Materials Science and Engineering, University of FloridaDepartment of Materials Science and Engineering, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Physics, University of FloridaDepartment of Materials Science and Engineering, University of FloridaAbstract The Eliashberg theory of superconductivity accounts for the fundamental physics of conventional superconductors, including the retardation of the interaction and the Coulomb pseudopotential, to predict the critical temperature T c. McMillan, Allen, and Dynes derived approximate closed-form expressions for the critical temperature within this theory, which depends on the electron–phonon spectral function α 2 F(ω). Here we show that modern machine-learning techniques can substantially improve these formulae, accounting for more general shapes of the α 2 F function. Using symbolic regression and the SISSO framework, together with a database of artificially generated α 2 F functions and numerical solutions of the Eliashberg equations, we derive a formula for T c that performs as well as Allen–Dynes for low-T c superconductors and substantially better for higher-T c ones. This corrects the systematic underestimation of T c while reproducing the physical constraints originally outlined by Allen and Dynes. This equation should replace the Allen–Dynes formula for the prediction of higher-temperature superconductors.https://doi.org/10.1038/s41524-021-00666-7
spellingShingle S. R. Xie
Y. Quan
A. C. Hire
B. Deng
J. M. DeStefano
I. Salinas
U. S. Shah
L. Fanfarillo
J. Lim
J. Kim
G. R. Stewart
J. J. Hamlin
P. J. Hirschfeld
R. G. Hennig
Machine learning of superconducting critical temperature from Eliashberg theory
npj Computational Materials
title Machine learning of superconducting critical temperature from Eliashberg theory
title_full Machine learning of superconducting critical temperature from Eliashberg theory
title_fullStr Machine learning of superconducting critical temperature from Eliashberg theory
title_full_unstemmed Machine learning of superconducting critical temperature from Eliashberg theory
title_short Machine learning of superconducting critical temperature from Eliashberg theory
title_sort machine learning of superconducting critical temperature from eliashberg theory
url https://doi.org/10.1038/s41524-021-00666-7
work_keys_str_mv AT srxie machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT yquan machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT achire machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT bdeng machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT jmdestefano machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT isalinas machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT usshah machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT lfanfarillo machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT jlim machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT jkim machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT grstewart machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT jjhamlin machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT pjhirschfeld machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory
AT rghennig machinelearningofsuperconductingcriticaltemperaturefromeliashbergtheory