Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies
Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (−)-epigalloc...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-08-01
|
Series: | Journal of Pharmaceutical Analysis |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095177920310972 |
_version_ | 1818438227082608640 |
---|---|
author | Sourav Das Leader Langbang Mahabul Haque Vinay Kumar Belwal Kripamoy Aguan Atanu Singha Roy |
author_facet | Sourav Das Leader Langbang Mahabul Haque Vinay Kumar Belwal Kripamoy Aguan Atanu Singha Roy |
author_sort | Sourav Das |
collection | DOAJ |
description | Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (−)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (Kb) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M−1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The –OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics. |
first_indexed | 2024-12-14T17:37:13Z |
format | Article |
id | doaj.art-c26b8e1efd1c4f398da2ec83017cd5b1 |
institution | Directory Open Access Journal |
issn | 2095-1779 |
language | English |
last_indexed | 2024-12-14T17:37:13Z |
publishDate | 2021-08-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Pharmaceutical Analysis |
spelling | doaj.art-c26b8e1efd1c4f398da2ec83017cd5b12022-12-21T22:52:56ZengElsevierJournal of Pharmaceutical Analysis2095-17792021-08-01114422434Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studiesSourav Das0Leader Langbang1Mahabul Haque2Vinay Kumar Belwal3Kripamoy Aguan4Atanu Singha Roy5Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, IndiaDepartment of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, IndiaDepartment of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, IndiaDepartment of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, IndiaDepartment of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, IndiaDepartment of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India; Corresponding author.Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (−)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (Kb) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M−1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The –OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics.http://www.sciencedirect.com/science/article/pii/S2095177920310972Green teaPolyphenolsSilver nanoparticlesAnti-bacterialCytotoxicityHen egg white lysozyme (HEWL) |
spellingShingle | Sourav Das Leader Langbang Mahabul Haque Vinay Kumar Belwal Kripamoy Aguan Atanu Singha Roy Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies Journal of Pharmaceutical Analysis Green tea Polyphenols Silver nanoparticles Anti-bacterial Cytotoxicity Hen egg white lysozyme (HEWL) |
title | Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies |
title_full | Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies |
title_fullStr | Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies |
title_full_unstemmed | Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies |
title_short | Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies |
title_sort | biocompatible silver nanoparticles an investigation into their protein binding efficacies anti bacterial effects and cell cytotoxicity studies |
topic | Green tea Polyphenols Silver nanoparticles Anti-bacterial Cytotoxicity Hen egg white lysozyme (HEWL) |
url | http://www.sciencedirect.com/science/article/pii/S2095177920310972 |
work_keys_str_mv | AT souravdas biocompatiblesilvernanoparticlesaninvestigationintotheirproteinbindingefficaciesantibacterialeffectsandcellcytotoxicitystudies AT leaderlangbang biocompatiblesilvernanoparticlesaninvestigationintotheirproteinbindingefficaciesantibacterialeffectsandcellcytotoxicitystudies AT mahabulhaque biocompatiblesilvernanoparticlesaninvestigationintotheirproteinbindingefficaciesantibacterialeffectsandcellcytotoxicitystudies AT vinaykumarbelwal biocompatiblesilvernanoparticlesaninvestigationintotheirproteinbindingefficaciesantibacterialeffectsandcellcytotoxicitystudies AT kripamoyaguan biocompatiblesilvernanoparticlesaninvestigationintotheirproteinbindingefficaciesantibacterialeffectsandcellcytotoxicitystudies AT atanusingharoy biocompatiblesilvernanoparticlesaninvestigationintotheirproteinbindingefficaciesantibacterialeffectsandcellcytotoxicitystudies |