Reaction rate analysis with unreacted-core shell model for chemical heat pump cooling mode with SrBr2 hydration

Here, we propose a chemical heat pump chiller with a SrBr2 hydration reaction system for utilization of waste heat. The SrBr2 hydration reaction could recover waste heat in low temperatures ranging from 373 to 353K, and the system showed good potential in terms of the high cooling thermal-storage de...

Full description

Bibliographic Details
Main Authors: Takehiro ESAKI, Kazuki KUWATA, Atsuhiro ICHINOSE, Noriyuki KOBAYASHI
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2017-02-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/83/847/83_16-00439/_pdf/-char/en
Description
Summary:Here, we propose a chemical heat pump chiller with a SrBr2 hydration reaction system for utilization of waste heat. The SrBr2 hydration reaction could recover waste heat in low temperatures ranging from 373 to 353K, and the system showed good potential in terms of the high cooling thermal-storage density. Previous studies have given little information on the reaction characteristics of the SrBr2 hydration reaction. In this paper, we developed a measuring method for the reaction rate based on the volumetric method. We analyzed the hydration reaction rate with an unreacted-core shell model. In the experiments, the reaction fraction of the SrBr2 hydration reached 1.0 within 300 sec. By analyzing the hydration reaction rate with the unreacted-core shell model, the SrBr2 hydration rate was successfully applied to intra particle diffusion controlled. And the activation energy for vapor diffusion in SrBr2 particle value was calculated to be 26.8 (kJ/mol). The calculation results showed good agreement with those of the experiment as the reaction fraction reached 0.8.
ISSN:2187-9761