A stabilized multiple time step method for coupled Stokes-Darcy flows and transport model

A stabilized finite element algorithm with different time steps on different physical variables for the coupled Stokes-Darcy flows system with the solution transport is studied. The viscosity in the model is assumed to depend on the concentration. The nonconforming piecewise linear Crouzeix-Raviart...

Full description

Bibliographic Details
Main Authors: Jingyuan Zhang, Ruikun Zhang, Xue Lin
Format: Article
Language:English
Published: AIMS Press 2023-07-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231091?viewType=HTML
Description
Summary:A stabilized finite element algorithm with different time steps on different physical variables for the coupled Stokes-Darcy flows system with the solution transport is studied. The viscosity in the model is assumed to depend on the concentration. The nonconforming piecewise linear Crouzeix-Raviart element and piecewise constant are used to approximate velocity and pressure in the coupled Stokes-Darcy flows system, and conforming piecewise linear finite element is used to approximate concentration in the transport system. The time derivatives are discretized with different step sizes for the partial differential equations in these two systems. The existence and uniqueness of the approximate solution are unconditionally satisfied. A priori error estimates are established, which also provides a guidance on the ratio of time step sizes with respect to the ratio of the physical parameters. Numerical examples are presented to verify the theoretical results.
ISSN:2473-6988