Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions

In the past few years, many scholars gave much attention to the use of <i>q</i>-calculus in geometric functions theory, and they defined new subclasses of analytic and harmonic functions. While using the symmetric <i>q</i>-calculus in geometric function theory, very little wo...

Full description

Bibliographic Details
Main Authors: Mohammad Faisal Khan, Isra Al-Shbeil, Najla Aloraini, Nazar Khan, Shahid Khan
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/10/2188
_version_ 1797469870415151104
author Mohammad Faisal Khan
Isra Al-Shbeil
Najla Aloraini
Nazar Khan
Shahid Khan
author_facet Mohammad Faisal Khan
Isra Al-Shbeil
Najla Aloraini
Nazar Khan
Shahid Khan
author_sort Mohammad Faisal Khan
collection DOAJ
description In the past few years, many scholars gave much attention to the use of <i>q</i>-calculus in geometric functions theory, and they defined new subclasses of analytic and harmonic functions. While using the symmetric <i>q</i>-calculus in geometric function theory, very little work has been published so far. In this research, with the help of fundamental concepts of symmetric <i>q</i>-calculus and the symmetric <i>q</i>-Salagean differential operator for harmonic functions, we define a new class of harmonic functions connected with Janowski functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><msubsup><mi mathvariant="script">S</mi><mrow><mi mathvariant="script">H</mi></mrow><mn>0</mn></msubsup><mo>˜</mo></mover><mfenced separators="" open="(" close=")"><mi>m</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi mathvariant="script">A</mi><mo>,</mo><mi mathvariant="script">B</mi></mfenced></mrow></semantics></math></inline-formula>. First, we illustrate the necessary and sufficient convolution condition for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><msubsup><mi mathvariant="script">S</mi><mrow><mi mathvariant="script">H</mi></mrow><mn>0</mn></msubsup><mo>˜</mo></mover><mfenced separators="" open="(" close=")"><mi>m</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi mathvariant="script">A</mi><mo>,</mo><mi mathvariant="script">B</mi></mfenced></mrow></semantics></math></inline-formula> and then prove that this sufficient condition is a sense preserving and univalent, and it is necessary for its subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><msubsup><mi mathvariant="script">TS</mi><mrow><mi mathvariant="script">H</mi></mrow><mn>0</mn></msubsup><mo>˜</mo></mover><mfenced separators="" open="(" close=")"><mi>m</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi mathvariant="script">A</mi><mo>,</mo><mi mathvariant="script">B</mi></mfenced></mrow></semantics></math></inline-formula>. Furthermore, by using this necessary and sufficient coefficient condition, we establish some novel results, particularly convexity, compactness, radii of <i>q</i>-starlike and <i>q</i>-convex functions of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, and extreme points for this newly defined class of harmonic functions. Our results are the generalizations of some previous known results.
first_indexed 2024-03-09T19:26:12Z
format Article
id doaj.art-c27829c05b0a4ccd8638457306d63dcb
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T19:26:12Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-c27829c05b0a4ccd8638457306d63dcb2023-11-24T02:53:56ZengMDPI AGSymmetry2073-89942022-10-011410218810.3390/sym14102188Applications of Symmetric Quantum Calculus to the Class of Harmonic FunctionsMohammad Faisal Khan0Isra Al-Shbeil1Najla Aloraini2Nazar Khan3Shahid Khan4Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi ArabiaDepartment of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, JordanDepartment of Mathematics, College of Arts and Sciences Onaizah, Qassim University, Buraidah 51452, Saudi ArabiaDepartment of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, PakistanDepartment of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, PakistanIn the past few years, many scholars gave much attention to the use of <i>q</i>-calculus in geometric functions theory, and they defined new subclasses of analytic and harmonic functions. While using the symmetric <i>q</i>-calculus in geometric function theory, very little work has been published so far. In this research, with the help of fundamental concepts of symmetric <i>q</i>-calculus and the symmetric <i>q</i>-Salagean differential operator for harmonic functions, we define a new class of harmonic functions connected with Janowski functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><msubsup><mi mathvariant="script">S</mi><mrow><mi mathvariant="script">H</mi></mrow><mn>0</mn></msubsup><mo>˜</mo></mover><mfenced separators="" open="(" close=")"><mi>m</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi mathvariant="script">A</mi><mo>,</mo><mi mathvariant="script">B</mi></mfenced></mrow></semantics></math></inline-formula>. First, we illustrate the necessary and sufficient convolution condition for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><msubsup><mi mathvariant="script">S</mi><mrow><mi mathvariant="script">H</mi></mrow><mn>0</mn></msubsup><mo>˜</mo></mover><mfenced separators="" open="(" close=")"><mi>m</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi mathvariant="script">A</mi><mo>,</mo><mi mathvariant="script">B</mi></mfenced></mrow></semantics></math></inline-formula> and then prove that this sufficient condition is a sense preserving and univalent, and it is necessary for its subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><msubsup><mi mathvariant="script">TS</mi><mrow><mi mathvariant="script">H</mi></mrow><mn>0</mn></msubsup><mo>˜</mo></mover><mfenced separators="" open="(" close=")"><mi>m</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi mathvariant="script">A</mi><mo>,</mo><mi mathvariant="script">B</mi></mfenced></mrow></semantics></math></inline-formula>. Furthermore, by using this necessary and sufficient coefficient condition, we establish some novel results, particularly convexity, compactness, radii of <i>q</i>-starlike and <i>q</i>-convex functions of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, and extreme points for this newly defined class of harmonic functions. Our results are the generalizations of some previous known results.https://www.mdpi.com/2073-8994/14/10/2188analytic functionssymmetric <i>q</i>-calculussymmetric <i>q</i>-derivative operatorharmonic functionsJanowski functionssymmetric Salagean <i>q</i>-differential operator
spellingShingle Mohammad Faisal Khan
Isra Al-Shbeil
Najla Aloraini
Nazar Khan
Shahid Khan
Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
Symmetry
analytic functions
symmetric <i>q</i>-calculus
symmetric <i>q</i>-derivative operator
harmonic functions
Janowski functions
symmetric Salagean <i>q</i>-differential operator
title Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
title_full Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
title_fullStr Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
title_full_unstemmed Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
title_short Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
title_sort applications of symmetric quantum calculus to the class of harmonic functions
topic analytic functions
symmetric <i>q</i>-calculus
symmetric <i>q</i>-derivative operator
harmonic functions
Janowski functions
symmetric Salagean <i>q</i>-differential operator
url https://www.mdpi.com/2073-8994/14/10/2188
work_keys_str_mv AT mohammadfaisalkhan applicationsofsymmetricquantumcalculustotheclassofharmonicfunctions
AT israalshbeil applicationsofsymmetricquantumcalculustotheclassofharmonicfunctions
AT najlaaloraini applicationsofsymmetricquantumcalculustotheclassofharmonicfunctions
AT nazarkhan applicationsofsymmetricquantumcalculustotheclassofharmonicfunctions
AT shahidkhan applicationsofsymmetricquantumcalculustotheclassofharmonicfunctions