Differential decline of lung function in COPD patients according to structural abnormality in chest CT

Background: Different progressions or prognoses of chronic obstructive pulmonary disease (COPD) have been reported according to structural abnormalities based on chest computed tomography (CT). This study aimed to investigate whether different structural abnormalities independently affect annual lun...

Full description

Bibliographic Details
Main Authors: Hyun Woo Lee, Jung-Kyu Lee, Youlim Kim, An-Soo Jang, Yong il Hwang, Jae Ha Lee, Ki-Suck Jung, Kwang Ha Yoo, Hyoung Kyu Yoon, Deog Kyeom Kim
Format: Article
Language:English
Published: Elsevier 2024-04-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844024037149
Description
Summary:Background: Different progressions or prognoses of chronic obstructive pulmonary disease (COPD) have been reported according to structural abnormalities based on chest computed tomography (CT). This study aimed to investigate whether different structural abnormalities independently affect annual lung function changes and clinical prognosis in patients with COPD. Methods: This longitudinal multicenter observational study was conducted using the KOCOSS cohort (NCT02800499) database in Korea from January 2012 to December 2019. For COPD patients with chest CT findings at baseline enrolment and longitudinal spirometric data, annual forced expiratory volume in 1 s (FEV1) decline rate (mL/year) and clinical outcomes were compared according to structural abnormalities, including emphysema, bronchiectasis (BE), and tuberculosis-destroyed lung (TDL). We estimated the adjusted annual FEV1 changes using a mixed-effect linear regression model. Results: Among the enrolled 237 patients, 152 showed structural abnormalities. Emphysema, BE, and TDL were observed in 119 (78.3%), 28 (18.4%), and 27 (17.8%) patients, respectively. The annual decline in FEV1 was faster in COPD patients with structural abnormalities than those without (β = −70.6 mL/year, P-value = 0.039). BE/TDL-dominant or emphysema-dominant structural abnormality contributed to an accelerated annual FEV1 decline compared to no structural abnormality (BE/TDL-dominant, β = −103.7 mL/year, P-value = 0.043; emphysema-dominant, β = −84.1 mL/year, P-value = 0.018). Structural abnormalities made no significant differences in acute exacerbation rate and mortality. Conclusion: The lung function decline rate in COPD differed according to structural abnormalities on CT. These findings may suggest that more focus should be placed on earlier intervention or regular follow-up with spirometry in COPD patients with BE or TDL on chest CT.
ISSN:2405-8440