Summary: | Performance of convergence to the optimum value is not completely a known process due to characteristics of the considered design problem and floating values of optimization algorithm control parameters. However, increasing robustness and effectiveness of an optimization algorithm may be possible statistically by estimating proper algorithm parameters values. Not only the algorithm which utilizes these estimated-proper algorithm parameter values may enable to find the best fitness in a shorter time, but also it may supply the optimum searching process with a pragmatical manner. This study focuses on the statistical investigation of the optimum values for the control parameters of the harmony search algorithm and their effects on the best solution. For this purpose, the Taguchi method integrated hybrid harmony search algorithm has been presented as an alternative method for optimization analyses instead of sensitivity analyses which are generally used for the investigation of the proper algorithm parameters. The harmony memory size, the harmony memory considering rate, the pitch adjustment rate, the maximum iteration number, and the independent run number of entire iterations have been debated as the algorithm control parameters of the harmony search algorithm. To observe the effects of design problem characteristics on control parameters, the new hybrid method has been applied to different engineering optimization problems including several engineering-optimization examples and a real-size engineering optimization design. End of extensive optimization and statistical analyses to achieve optimum values of control parameters providing rapid convergence to optimum fitness value and handling constraints have been estimated with reasonable relative errors. Employing the Taguchi method integrated hybrid harmony search algorithm in parameter optimization has been demonstrated as it is a reliable and efficient manner to obtain the optimum results with fewer numbers of run and iteration.
|