The asymptotic error of chaos expansion approximations for stochastic differential equations

In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. W...

Full description

Bibliographic Details
Main Authors: Tony Huschto, Mark Podolskij, Sebastian Sager
Format: Article
Language:English
Published: VTeX 2019-04-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://www.vmsta.org/doi/10.15559/19-VMSTA133
_version_ 1828772212509769728
author Tony Huschto
Mark Podolskij
Sebastian Sager
author_facet Tony Huschto
Mark Podolskij
Sebastian Sager
author_sort Tony Huschto
collection DOAJ
description In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus.
first_indexed 2024-12-11T14:39:35Z
format Article
id doaj.art-c2979bcc314f43a2b50c79e73a58822d
institution Directory Open Access Journal
issn 2351-6046
2351-6054
language English
last_indexed 2024-12-11T14:39:35Z
publishDate 2019-04-01
publisher VTeX
record_format Article
series Modern Stochastics: Theory and Applications
spelling doaj.art-c2979bcc314f43a2b50c79e73a58822d2022-12-22T01:01:59ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542019-04-016214516510.15559/19-VMSTA133The asymptotic error of chaos expansion approximations for stochastic differential equationsTony Huschto0Mark Podolskij1Sebastian Sager2Department of Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, GermanyDepartment of Mathematics, Aarhus University, Ny Munkegade 118, 8000 Aarhus, DenmarkFaculty of Mathematics, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, GermanyIn this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus.https://www.vmsta.org/doi/10.15559/19-VMSTA133Chaos expansionMalliavin calculusnumerical approximationStochastic differential equations
spellingShingle Tony Huschto
Mark Podolskij
Sebastian Sager
The asymptotic error of chaos expansion approximations for stochastic differential equations
Modern Stochastics: Theory and Applications
Chaos expansion
Malliavin calculus
numerical approximation
Stochastic differential equations
title The asymptotic error of chaos expansion approximations for stochastic differential equations
title_full The asymptotic error of chaos expansion approximations for stochastic differential equations
title_fullStr The asymptotic error of chaos expansion approximations for stochastic differential equations
title_full_unstemmed The asymptotic error of chaos expansion approximations for stochastic differential equations
title_short The asymptotic error of chaos expansion approximations for stochastic differential equations
title_sort asymptotic error of chaos expansion approximations for stochastic differential equations
topic Chaos expansion
Malliavin calculus
numerical approximation
Stochastic differential equations
url https://www.vmsta.org/doi/10.15559/19-VMSTA133
work_keys_str_mv AT tonyhuschto theasymptoticerrorofchaosexpansionapproximationsforstochasticdifferentialequations
AT markpodolskij theasymptoticerrorofchaosexpansionapproximationsforstochasticdifferentialequations
AT sebastiansager theasymptoticerrorofchaosexpansionapproximationsforstochasticdifferentialequations
AT tonyhuschto asymptoticerrorofchaosexpansionapproximationsforstochasticdifferentialequations
AT markpodolskij asymptoticerrorofchaosexpansionapproximationsforstochasticdifferentialequations
AT sebastiansager asymptoticerrorofchaosexpansionapproximationsforstochasticdifferentialequations