Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment
Forest fire monitoring is very much needed for protecting the forest from any kind of disaster or anomaly leading to the destruction of the forest. Now, with the advent of Internet of Things (IoT), a good amount of research has been done on energy consumption, coverage, and other issues. These works...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/13/4591 |
_version_ | 1827688174361509888 |
---|---|
author | Srividhya Swaminathan Suresh Sankaranarayanan Sergei Kozlov Joel J. P. C. Rodrigues |
author_facet | Srividhya Swaminathan Suresh Sankaranarayanan Sergei Kozlov Joel J. P. C. Rodrigues |
author_sort | Srividhya Swaminathan |
collection | DOAJ |
description | Forest fire monitoring is very much needed for protecting the forest from any kind of disaster or anomaly leading to the destruction of the forest. Now, with the advent of Internet of Things (IoT), a good amount of research has been done on energy consumption, coverage, and other issues. These works did not focus on forest fire management. The IoT-enabled environment is made up of low power lossy networks (LLNs). For improving the performance of routing protocol in forest fire management, energy-efficient routing protocol for low power lossy networks (E-RPL) was developed where residual power was used as an objective function towards calculating the rank of the parent node to form the destination-oriented directed acyclic graph (DODAG). The challenge in E-RPL is the scalability of the network resulting in a long end-to-end delay and less packet delivery. Additionally, the energy of sensor nodes increased with different transmission range. So, for obviating the above-mentioned drawbacks in E-RPL, compressed data aggregation and energy-based RPL routing (CAA-ERPL) is proposed. The CAA-ERPL is compared with E-RPL, and the performance is analyzed resulting in reduced packet transfer delay, less energy consumption, and increased packet delivery ratio for 10, 20, 30, 40, and 50 nodes. This has been evaluated using a Contiki Cooja simulator. |
first_indexed | 2024-03-10T09:50:11Z |
format | Article |
id | doaj.art-c2a242255be348c683e7f3fbccf31f93 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T09:50:11Z |
publishDate | 2021-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-c2a242255be348c683e7f3fbccf31f932023-11-22T02:51:44ZengMDPI AGSensors1424-82202021-07-012113459110.3390/s21134591Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest EnvironmentSrividhya Swaminathan0Suresh Sankaranarayanan1Sergei Kozlov2Joel J. P. C. Rodrigues3Department of Information Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, IndiaDepartment of Information Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, IndiaITMO University, 197101 St. Petersburg, RussiaITMO University, 197101 St. Petersburg, RussiaForest fire monitoring is very much needed for protecting the forest from any kind of disaster or anomaly leading to the destruction of the forest. Now, with the advent of Internet of Things (IoT), a good amount of research has been done on energy consumption, coverage, and other issues. These works did not focus on forest fire management. The IoT-enabled environment is made up of low power lossy networks (LLNs). For improving the performance of routing protocol in forest fire management, energy-efficient routing protocol for low power lossy networks (E-RPL) was developed where residual power was used as an objective function towards calculating the rank of the parent node to form the destination-oriented directed acyclic graph (DODAG). The challenge in E-RPL is the scalability of the network resulting in a long end-to-end delay and less packet delivery. Additionally, the energy of sensor nodes increased with different transmission range. So, for obviating the above-mentioned drawbacks in E-RPL, compressed data aggregation and energy-based RPL routing (CAA-ERPL) is proposed. The CAA-ERPL is compared with E-RPL, and the performance is analyzed resulting in reduced packet transfer delay, less energy consumption, and increased packet delivery ratio for 10, 20, 30, 40, and 50 nodes. This has been evaluated using a Contiki Cooja simulator.https://www.mdpi.com/1424-8220/21/13/4591forest monitoringInternet of ThingsfogLLNaggregator |
spellingShingle | Srividhya Swaminathan Suresh Sankaranarayanan Sergei Kozlov Joel J. P. C. Rodrigues Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment Sensors forest monitoring Internet of Things fog LLN aggregator |
title | Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment |
title_full | Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment |
title_fullStr | Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment |
title_full_unstemmed | Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment |
title_short | Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment |
title_sort | compression aware aggregation and energy aware routing in iot fog enabled forest environment |
topic | forest monitoring Internet of Things fog LLN aggregator |
url | https://www.mdpi.com/1424-8220/21/13/4591 |
work_keys_str_mv | AT srividhyaswaminathan compressionawareaggregationandenergyawareroutinginiotfogenabledforestenvironment AT sureshsankaranarayanan compressionawareaggregationandenergyawareroutinginiotfogenabledforestenvironment AT sergeikozlov compressionawareaggregationandenergyawareroutinginiotfogenabledforestenvironment AT joeljpcrodrigues compressionawareaggregationandenergyawareroutinginiotfogenabledforestenvironment |