Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel

A fundamental understanding of the flow of polymer solutions through the pore spaces of porous media is relevant and significant to enhanced oil recovery and groundwater remediation. We present in this work an experimental study of the fluid rheological effects on non-Newtonian flows in a simple lab...

Full description

Bibliographic Details
Main Authors: Purva P. Jagdale, Di Li, Xingchen Shao, Joshua B. Bostwick, Xiangchun Xuan
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/3/278
_version_ 1811294395987656704
author Purva P. Jagdale
Di Li
Xingchen Shao
Joshua B. Bostwick
Xiangchun Xuan
author_facet Purva P. Jagdale
Di Li
Xingchen Shao
Joshua B. Bostwick
Xiangchun Xuan
author_sort Purva P. Jagdale
collection DOAJ
description A fundamental understanding of the flow of polymer solutions through the pore spaces of porous media is relevant and significant to enhanced oil recovery and groundwater remediation. We present in this work an experimental study of the fluid rheological effects on non-Newtonian flows in a simple laboratory model of the real-world pores&#8212;a rectangular sudden contraction&#8722;expansion microchannel. We test four different polymer solutions with varying rheological properties, including xanthan gum (XG), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO), and polyacrylamide (PAA). We compare their flows against that of pure water at the Reynolds (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>) and Weissenburg (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>i</mi> </mrow> </semantics> </math> </inline-formula>) numbers that each span several orders of magnitude. We use particle streakline imaging to visualize the flow at the contraction&#8722;expansion region for a comprehensive investigation of both the sole and the combined effects of fluid shear thinning, elasticity and inertia. The observed flow regimes and vortex development in each of the tested fluids are summarized in the dimensionless <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>i</mi> <mo>&#8722;</mo> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#967;</mi> <mi>L</mi> </msub> <mo>&#8722;</mo> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> parameter spaces, respectively, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#967;</mi> <mi>L</mi> </msub> </mrow> </semantics> </math> </inline-formula> is the normalized vortex length. We find that fluid inertia draws symmetric vortices downstream at the expansion part of the microchannel. Fluid shear thinning causes symmetric vortices upstream at the contraction part. The effect of fluid elasticity is, however, complicated to analyze because of perhaps the strong impact of polymer chemistry such as rigidity and length. Interestingly, we find that the downstream vortices in the flow of Newtonian water, shear-thinning XG and elastic PVP solutions collapse into one curve in the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#967;</mi> <mi>L</mi> </msub> <mo>&#8722;</mo> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> space.
first_indexed 2024-04-13T05:16:57Z
format Article
id doaj.art-c2a364898971495a865396c7d1795c35
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-04-13T05:16:57Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-c2a364898971495a865396c7d1795c352022-12-22T03:00:52ZengMDPI AGMicromachines2072-666X2020-03-0111327810.3390/mi11030278mi11030278Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion MicrochannelPurva P. Jagdale0Di Li1Xingchen Shao2Joshua B. Bostwick3Xiangchun Xuan4Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 USADepartment of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 USADepartment of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 USADepartment of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 USADepartment of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 USAA fundamental understanding of the flow of polymer solutions through the pore spaces of porous media is relevant and significant to enhanced oil recovery and groundwater remediation. We present in this work an experimental study of the fluid rheological effects on non-Newtonian flows in a simple laboratory model of the real-world pores&#8212;a rectangular sudden contraction&#8722;expansion microchannel. We test four different polymer solutions with varying rheological properties, including xanthan gum (XG), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO), and polyacrylamide (PAA). We compare their flows against that of pure water at the Reynolds (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>) and Weissenburg (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>i</mi> </mrow> </semantics> </math> </inline-formula>) numbers that each span several orders of magnitude. We use particle streakline imaging to visualize the flow at the contraction&#8722;expansion region for a comprehensive investigation of both the sole and the combined effects of fluid shear thinning, elasticity and inertia. The observed flow regimes and vortex development in each of the tested fluids are summarized in the dimensionless <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>i</mi> <mo>&#8722;</mo> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#967;</mi> <mi>L</mi> </msub> <mo>&#8722;</mo> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> parameter spaces, respectively, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#967;</mi> <mi>L</mi> </msub> </mrow> </semantics> </math> </inline-formula> is the normalized vortex length. We find that fluid inertia draws symmetric vortices downstream at the expansion part of the microchannel. Fluid shear thinning causes symmetric vortices upstream at the contraction part. The effect of fluid elasticity is, however, complicated to analyze because of perhaps the strong impact of polymer chemistry such as rigidity and length. Interestingly, we find that the downstream vortices in the flow of Newtonian water, shear-thinning XG and elastic PVP solutions collapse into one curve in the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#967;</mi> <mi>L</mi> </msub> <mo>&#8722;</mo> <mi>R</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> space.https://www.mdpi.com/2072-666X/11/3/278non-newtonian fluidelasticityshear thinninginertiamicrofluidics
spellingShingle Purva P. Jagdale
Di Li
Xingchen Shao
Joshua B. Bostwick
Xiangchun Xuan
Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel
Micromachines
non-newtonian fluid
elasticity
shear thinning
inertia
microfluidics
title Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel
title_full Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel
title_fullStr Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel
title_full_unstemmed Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel
title_short Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion Microchannel
title_sort fluid rheological effects on the flow of polymer solutions in a contraction expansion microchannel
topic non-newtonian fluid
elasticity
shear thinning
inertia
microfluidics
url https://www.mdpi.com/2072-666X/11/3/278
work_keys_str_mv AT purvapjagdale fluidrheologicaleffectsontheflowofpolymersolutionsinacontractionexpansionmicrochannel
AT dili fluidrheologicaleffectsontheflowofpolymersolutionsinacontractionexpansionmicrochannel
AT xingchenshao fluidrheologicaleffectsontheflowofpolymersolutionsinacontractionexpansionmicrochannel
AT joshuabbostwick fluidrheologicaleffectsontheflowofpolymersolutionsinacontractionexpansionmicrochannel
AT xiangchunxuan fluidrheologicaleffectsontheflowofpolymersolutionsinacontractionexpansionmicrochannel