Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity

Device optimization plays a paramount role in current research on magnetic refrigeration. Solid state refrigerants have been characterized and numerical simulations assume a critical relevance in the development of magnetocaloric technology to have alternatives to vapour-compression systems whose op...

Full description

Bibliographic Details
Main Authors: Antonio P. Lopes, Vitor A. F. Costa, Joao S. Amaral
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/13/6581
_version_ 1797480905077424128
author Antonio P. Lopes
Vitor A. F. Costa
Joao S. Amaral
author_facet Antonio P. Lopes
Vitor A. F. Costa
Joao S. Amaral
author_sort Antonio P. Lopes
collection DOAJ
description Device optimization plays a paramount role in current research on magnetic refrigeration. Solid state refrigerants have been characterized and numerical simulations assume a critical relevance in the development of magnetocaloric technology to have alternatives to vapour-compression systems whose operating elements have high global warming potential. Experimental studies have shown that the thermal properties of several magnetocaloric materials considerably change around their Curie temperatures (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>C</mi></msub></semantics></math></inline-formula>) and that this temperature dependency should not be dismissed. Current numerical research does not fully predict the complete thermal response of such materials, due to inaccuracies from neglecting the impact of combining both thermal conductivity (<i>k</i>) and specific heat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula>) dependence on temperature. In this study, a simple unidimensional model includes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> functions as input parameters, highlighting the relevance of considering temperature dependent thermophysical properties’ inputs when simulating the magnetic refrigerant’s heat transfer processes. The obtained results evidence that neglecting the temperature dependence of the magnetocaloric material thermophysical properties, namely its thermal conductivity and its specific heat, affects its temperature response, what may strongly affect the results after a succession of (hundreds or thousands) cycles.
first_indexed 2024-03-09T22:07:50Z
format Article
id doaj.art-c2b2c23c4d3a4dc7988429aa6e7c017f
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-09T22:07:50Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-c2b2c23c4d3a4dc7988429aa6e7c017f2023-11-23T19:39:15ZengMDPI AGApplied Sciences2076-34172022-06-011213658110.3390/app12136581Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal ConductivityAntonio P. Lopes0Vitor A. F. Costa1Joao S. Amaral2Department of Physics, CICECO–Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, PortugalDepartment of Mechanical Engineering, Center for Mechanical Technology and Automation, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, PortugalDepartment of Physics, CICECO–Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, PortugalDevice optimization plays a paramount role in current research on magnetic refrigeration. Solid state refrigerants have been characterized and numerical simulations assume a critical relevance in the development of magnetocaloric technology to have alternatives to vapour-compression systems whose operating elements have high global warming potential. Experimental studies have shown that the thermal properties of several magnetocaloric materials considerably change around their Curie temperatures (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>C</mi></msub></semantics></math></inline-formula>) and that this temperature dependency should not be dismissed. Current numerical research does not fully predict the complete thermal response of such materials, due to inaccuracies from neglecting the impact of combining both thermal conductivity (<i>k</i>) and specific heat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula>) dependence on temperature. In this study, a simple unidimensional model includes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> functions as input parameters, highlighting the relevance of considering temperature dependent thermophysical properties’ inputs when simulating the magnetic refrigerant’s heat transfer processes. The obtained results evidence that neglecting the temperature dependence of the magnetocaloric material thermophysical properties, namely its thermal conductivity and its specific heat, affects its temperature response, what may strongly affect the results after a succession of (hundreds or thousands) cycles.https://www.mdpi.com/2076-3417/12/13/6581heat transfernumerical modellingthermophysical propertiesthermal conductivitymagnetocaloric materialstemperature dependence
spellingShingle Antonio P. Lopes
Vitor A. F. Costa
Joao S. Amaral
Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity
Applied Sciences
heat transfer
numerical modelling
thermophysical properties
thermal conductivity
magnetocaloric materials
temperature dependence
title Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity
title_full Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity
title_fullStr Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity
title_full_unstemmed Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity
title_short Thermal Response of Magnetic Refrigerants: Combined Effect of Temperature Dependent Specific Heat and Thermal Conductivity
title_sort thermal response of magnetic refrigerants combined effect of temperature dependent specific heat and thermal conductivity
topic heat transfer
numerical modelling
thermophysical properties
thermal conductivity
magnetocaloric materials
temperature dependence
url https://www.mdpi.com/2076-3417/12/13/6581
work_keys_str_mv AT antonioplopes thermalresponseofmagneticrefrigerantscombinedeffectoftemperaturedependentspecificheatandthermalconductivity
AT vitorafcosta thermalresponseofmagneticrefrigerantscombinedeffectoftemperaturedependentspecificheatandthermalconductivity
AT joaosamaral thermalresponseofmagneticrefrigerantscombinedeffectoftemperaturedependentspecificheatandthermalconductivity