Global Glacial Isostatic Adjustment Constrained by GPS Measurements: Spherical Harmonic Analyses of Uplifts and Geopotential Variations

In addition to studies of sea level change and mantle rheology, reliable Glacial Isostatic Adjustment (GIA) models are necessary as a background model to correct the widely used Gravity Recovery and Climate Experiment (GRACE) monthly gravity solutions to determine subsecular, nonviscous variations....

Full description

Bibliographic Details
Main Authors: Yan Zhou, Shaomin Yang, Jiesi Luo, Jim Ray, Yong Huang, Jiancheng Li
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/7/1209
Description
Summary:In addition to studies of sea level change and mantle rheology, reliable Glacial Isostatic Adjustment (GIA) models are necessary as a background model to correct the widely used Gravity Recovery and Climate Experiment (GRACE) monthly gravity solutions to determine subsecular, nonviscous variations. Based on spherical harmonic analyses, we developed a method using degree-dependent weighting to assimilate the Global Positioning System (GPS) derived crustal uplift rates into GIA model predictions, in which the good global pattern of GIA model predictions and better local resolution of GPS solutions are both retained. Some systematic errors in global GPS uplift rates were also corrected during the spherical harmonic analyses. Further, we used the refined GIA uplift rates to infer the GIA-induced rates of Stokes coefficients (complete to degree/order 120) relying on the accurate relationship between GIA vertical surface deformation and gravitational potential changes. The results show notable improvements relative to GIA model outputs, and may serve as a GIA-correction model for GRACE time-variable gravity data.
ISSN:2072-4292