Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator

The multiresponse semiparametric regression (MSR) model is a regression model with more than two response variables that are mutually correlated, and its regression function is composed of parametric and nonparametric components. The study objectives are propose a new method for estimating the MSR m...

Полное описание

Библиографические подробности
Главные авторы: Budi Lestari, Nur Chamidah, I. Nyoman Budiantara, Dursun Aydin
Формат: Статья
Язык:English
Опубликовано: Elsevier 2023-07-01
Серии:Journal of King Saud University: Science
Предметы:
Online-ссылка:http://www.sciencedirect.com/science/article/pii/S101836472300126X
_version_ 1827926656284622848
author Budi Lestari
Nur Chamidah
I. Nyoman Budiantara
Dursun Aydin
author_facet Budi Lestari
Nur Chamidah
I. Nyoman Budiantara
Dursun Aydin
author_sort Budi Lestari
collection DOAJ
description The multiresponse semiparametric regression (MSR) model is a regression model with more than two response variables that are mutually correlated, and its regression function is composed of parametric and nonparametric components. The study objectives are propose a new method for estimating the MSR model using smoothing spline. Also, find the confidence interval (CI) of parameters and the distribution asymptotically of the model parameters estimator. Methods used in this study are reproducing kernel Hilbert space (RKHS) method and a developed penalized weighted least squares (PWLS), and apply pivotal quantity, central limit theorem, and theorems of Cramer-Wold and Slutsky. The results are an 100(1–α)% CI estimate and an asymptotic normal distribution for the parameters of the MSR model. In conclusion, the estimated MSR model is a combined components estimate of parametric and nonparametric which is linear to observation, and CIs of parameters depend on t distribution and estimator of parameters is asymptotically normally distributed. Future time, this study results can be used as theoretical bases to design standard growth charts of the toddlers which can then be used to assess the nutritional status of the toddlers.
first_indexed 2024-03-13T05:39:54Z
format Article
id doaj.art-c2b4cf5f1c0843a19b05f9d372a12b9d
institution Directory Open Access Journal
issn 1018-3647
language English
last_indexed 2024-03-13T05:39:54Z
publishDate 2023-07-01
publisher Elsevier
record_format Article
series Journal of King Saud University: Science
spelling doaj.art-c2b4cf5f1c0843a19b05f9d372a12b9d2023-06-14T04:32:47ZengElsevierJournal of King Saud University: Science1018-36472023-07-01355102664Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimatorBudi Lestari0Nur Chamidah1I. Nyoman Budiantara2Dursun Aydin3Department of Mathematics, Faculty of Mathematics and Natural Sciences, The University of Jember, Jember 68121 IndonesiaDepartment of Mathematics, Faculty of Science and Technology, Airlangga University, Surabaya 60115 Indonesia; Corresponding author.Department of Statistics, Faculty of Sciences and Data Analytics, Sepuluh Nopember Institute of Technology, Surabaya 60111 IndonesiaDepartment of Statistics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000 TurkeyThe multiresponse semiparametric regression (MSR) model is a regression model with more than two response variables that are mutually correlated, and its regression function is composed of parametric and nonparametric components. The study objectives are propose a new method for estimating the MSR model using smoothing spline. Also, find the confidence interval (CI) of parameters and the distribution asymptotically of the model parameters estimator. Methods used in this study are reproducing kernel Hilbert space (RKHS) method and a developed penalized weighted least squares (PWLS), and apply pivotal quantity, central limit theorem, and theorems of Cramer-Wold and Slutsky. The results are an 100(1–α)% CI estimate and an asymptotic normal distribution for the parameters of the MSR model. In conclusion, the estimated MSR model is a combined components estimate of parametric and nonparametric which is linear to observation, and CIs of parameters depend on t distribution and estimator of parameters is asymptotically normally distributed. Future time, this study results can be used as theoretical bases to design standard growth charts of the toddlers which can then be used to assess the nutritional status of the toddlers.http://www.sciencedirect.com/science/article/pii/S101836472300126XAsymptotic distributionConfidence intervalNutritional statusSemiparametric regressionSmoothing spline
spellingShingle Budi Lestari
Nur Chamidah
I. Nyoman Budiantara
Dursun Aydin
Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
Journal of King Saud University: Science
Asymptotic distribution
Confidence interval
Nutritional status
Semiparametric regression
Smoothing spline
title Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
title_full Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
title_fullStr Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
title_full_unstemmed Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
title_short Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
title_sort determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
topic Asymptotic distribution
Confidence interval
Nutritional status
Semiparametric regression
Smoothing spline
url http://www.sciencedirect.com/science/article/pii/S101836472300126X
work_keys_str_mv AT budilestari determiningconfidenceintervalandasymptoticdistributionforparametersofmultiresponsesemiparametricregressionmodelusingsmoothingsplineestimator
AT nurchamidah determiningconfidenceintervalandasymptoticdistributionforparametersofmultiresponsesemiparametricregressionmodelusingsmoothingsplineestimator
AT inyomanbudiantara determiningconfidenceintervalandasymptoticdistributionforparametersofmultiresponsesemiparametricregressionmodelusingsmoothingsplineestimator
AT dursunaydin determiningconfidenceintervalandasymptoticdistributionforparametersofmultiresponsesemiparametricregressionmodelusingsmoothingsplineestimator