Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts
The viscosity of cryolite melts of conventional composition NaF–AlF3–CaF2–Al2O3 was studied by rotational viscometry using the FRS 1600 high-temperature rheometer. The cryolite ratio of the NaF–AlF3 melt was 2.1, 2.3, and 2.5; the Al2O3 content varied from 2 to 6.6, and CaF2 – from 0 to 8 wt%. The m...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Uralʹskij federalʹnyj universitet imeni pervogo Prezidenta Rossii B.N. Elʹcina
2021-09-01
|
Series: | Chimica Techno Acta |
Subjects: | |
Online Access: | https://journals.urfu.ru/index.php/chimtech/article/view/5216 |
_version_ | 1819173358058602496 |
---|---|
author | A. S. Lyutina A. A. Kataev A. V. Rudenko O. Yu. Tkacheva |
author_facet | A. S. Lyutina A. A. Kataev A. V. Rudenko O. Yu. Tkacheva |
author_sort | A. S. Lyutina |
collection | DOAJ |
description | The viscosity of cryolite melts of conventional composition NaF–AlF3–CaF2–Al2O3 was studied by rotational viscometry using the FRS 1600 high-temperature rheometer. The cryolite ratio of the NaF–AlF3 melt was 2.1, 2.3, and 2.5; the Al2O3 content varied from 2 to 6.6, and CaF2 – from 0 to 8 wt%. The measurements were carried out in the temperature range from liquidus to 1200 °C. The conditions for the laminar flow of the investigated melts were determined, based on the measurements of the cryolite melts viscosity as a function of the shear rate at a constant temperature. A shear rate of 12 ± 1 s–1 was chosen for studying the viscosity temperature dependence for all samples. The viscosity temperature dependence of cryolite melts is described by a linear equation. The temperature coefficient b in this equation has negative values and varies in the range of (–0.01)–(–0.06) mPa·s/deg. It was found that the viscosity of cryolite melts of conventional composition in the range of operating temperatures of aluminum electrolysis (950–970 °C) varies from 2.5 to 3.7 mPa·s (depending on the composition and temperature). The viscosity of cryolite-alumina melts increases with the rise of alumina content: 1 wt% Al2O3 increases the viscosity, on average, by 1%. However, the influence of CaF2 is more significant: the addition of 1 wt% CaF2 leads to an increase in viscosity by 3%. A decrease in the CR of the melt by 0.1 (in the range of 2.1–2.5) leads to a decrease in the viscosity of cryolite melts by 2.3%. A viscosity regression equation for the cryolite melts of conventional composition as a function of several independent parameters (temperature, CR, CaF2 and Al2O3 content) is obtained by the multivariable approximation of experimental data. The equation satisfactorily (within 1.5%) describes the viscosity of conventional industrial electrolytes and can be used for estimation of their viscosity. |
first_indexed | 2024-12-22T20:21:48Z |
format | Article |
id | doaj.art-c2b9afab6bc540ed9bb4af220f517560 |
institution | Directory Open Access Journal |
issn | 2411-1414 |
language | English |
last_indexed | 2024-12-22T20:21:48Z |
publishDate | 2021-09-01 |
publisher | Uralʹskij federalʹnyj universitet imeni pervogo Prezidenta Rossii B.N. Elʹcina |
record_format | Article |
series | Chimica Techno Acta |
spelling | doaj.art-c2b9afab6bc540ed9bb4af220f5175602022-12-21T18:13:49ZengUralʹskij federalʹnyj universitet imeni pervogo Prezidenta Rossii B.N. ElʹcinaChimica Techno Acta2411-14142021-09-018310.15826/chimtech.2021.8.3.064052Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite meltsA. S. Lyutina0A. A. Kataev1A. V. Rudenko2O. Yu. Tkacheva3Ural Federal University, Ekaterinburg; Institute of High-Temperature Electrochemistry, EkaterinburgInstitute of High-Temperature Electrochemistry, EkaterinburgInstitute of High-Temperature Electrochemistry, EkaterinburgUral Federal University, Ekaterinburg; Institute of High-Temperature Electrochemistry, EkaterinburgThe viscosity of cryolite melts of conventional composition NaF–AlF3–CaF2–Al2O3 was studied by rotational viscometry using the FRS 1600 high-temperature rheometer. The cryolite ratio of the NaF–AlF3 melt was 2.1, 2.3, and 2.5; the Al2O3 content varied from 2 to 6.6, and CaF2 – from 0 to 8 wt%. The measurements were carried out in the temperature range from liquidus to 1200 °C. The conditions for the laminar flow of the investigated melts were determined, based on the measurements of the cryolite melts viscosity as a function of the shear rate at a constant temperature. A shear rate of 12 ± 1 s–1 was chosen for studying the viscosity temperature dependence for all samples. The viscosity temperature dependence of cryolite melts is described by a linear equation. The temperature coefficient b in this equation has negative values and varies in the range of (–0.01)–(–0.06) mPa·s/deg. It was found that the viscosity of cryolite melts of conventional composition in the range of operating temperatures of aluminum electrolysis (950–970 °C) varies from 2.5 to 3.7 mPa·s (depending on the composition and temperature). The viscosity of cryolite-alumina melts increases with the rise of alumina content: 1 wt% Al2O3 increases the viscosity, on average, by 1%. However, the influence of CaF2 is more significant: the addition of 1 wt% CaF2 leads to an increase in viscosity by 3%. A decrease in the CR of the melt by 0.1 (in the range of 2.1–2.5) leads to a decrease in the viscosity of cryolite melts by 2.3%. A viscosity regression equation for the cryolite melts of conventional composition as a function of several independent parameters (temperature, CR, CaF2 and Al2O3 content) is obtained by the multivariable approximation of experimental data. The equation satisfactorily (within 1.5%) describes the viscosity of conventional industrial electrolytes and can be used for estimation of their viscosity.https://journals.urfu.ru/index.php/chimtech/article/view/5216molten cryolitealuminacalcium fluorideviscosityrotary method |
spellingShingle | A. S. Lyutina A. A. Kataev A. V. Rudenko O. Yu. Tkacheva Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts Chimica Techno Acta molten cryolite alumina calcium fluoride viscosity rotary method |
title | Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts |
title_full | Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts |
title_fullStr | Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts |
title_full_unstemmed | Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts |
title_short | Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts |
title_sort | effect of al2o3 and caf2 additives on the viscosity of conventional cryolite melts |
topic | molten cryolite alumina calcium fluoride viscosity rotary method |
url | https://journals.urfu.ru/index.php/chimtech/article/view/5216 |
work_keys_str_mv | AT aslyutina effectofal2o3andcaf2additivesontheviscosityofconventionalcryolitemelts AT aakataev effectofal2o3andcaf2additivesontheviscosityofconventionalcryolitemelts AT avrudenko effectofal2o3andcaf2additivesontheviscosityofconventionalcryolitemelts AT oyutkacheva effectofal2o3andcaf2additivesontheviscosityofconventionalcryolitemelts |