Added-value from a multi-criteria selection of donor catchments in the prediction of continuous streamflow series at ungauged pollution control-sites

We explore the potential of a multi-criteria selection of donor catchments in the prediction of continuous streamflow series by the spatial proximity method. Three criteria have been used: (1) spatial proximity; (2) physical similarity; (3) stream gauging network topology. An extensive assessmen...

Full description

Bibliographic Details
Main Authors: G. Drogue, W. B. Khediri, C. Conan
Format: Article
Language:English
Published: Copernicus Publications 2016-05-01
Series:Proceedings of the International Association of Hydrological Sciences
Online Access:https://www.proc-iahs.net/373/69/2016/piahs-373-69-2016.pdf
Description
Summary:We explore the potential of a multi-criteria selection of donor catchments in the prediction of continuous streamflow series by the spatial proximity method. Three criteria have been used: (1) spatial proximity; (2) physical similarity; (3) stream gauging network topology. An extensive assessment of our spatial proximity method variant is made on a 149 catchment-data set located in the Rhine-Meuse catchment. The competitiveness of the method is evaluated against spatial interpolation of catchment model parameters with ordinary kriging. We found that the spatial proximity approach is more efficient than ordinary kriging. When distance to upstream/downstream stream gauge stations is considered as a second order criterion in the selection of donor catchments, an unprecedented level of efficiency is reached for nested catchments. Nevertheless, the spatial proximity method does not take advantage from physical similarity between donor catchments and receiver catchments because catchments that are the most hydrologically similar to each catchment poorly match with the catchments that are the most physically similar to each catchment.
ISSN:2199-8981
2199-899X