Biosynthesis and Antimicrobial Activity of Pseudodesmin and Viscosinamide Cyclic Lipopeptides Produced by Pseudomonads Associated with the Cocoyam Rhizosphere

<i>Pseudomonas</i> cyclic lipopeptides (CLPs) are encoded non-ribosomally by biosynthetic gene clusters (BGCs) and possess diverse biological activities. In this study, we conducted chemical structure and BGC analyses with antimicrobial activity assays for two CLPs produced by <i>P...

Full description

Bibliographic Details
Main Authors: Feyisara E. Oni, Niels Geudens, Amayana Adiobo, Olumide O. Omoboye, Elsie A. Enow, Joseph T. Onyeka, Ayodeji E. Salami, René De Mot, José C. Martins, Monica Höfte
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/8/7/1079
Description
Summary:<i>Pseudomonas</i> cyclic lipopeptides (CLPs) are encoded non-ribosomally by biosynthetic gene clusters (BGCs) and possess diverse biological activities. In this study, we conducted chemical structure and BGC analyses with antimicrobial activity assays for two CLPs produced by <i>Pseudomonas</i> strains isolated from the cocoyam rhizosphere in Cameroon and Nigeria. LC-MS and NMR analyses showed that the <i>Pseudomonas</i> sp. COR52 and A2W4.9 produce pseudodesmin and viscosinamide, respectively. These CLPs belong to the Viscosin group characterized by a nonapeptidic moiety with a 7-membered macrocycle. Similar to other Viscosin-group CLPs, the initiatory non-ribosomal peptide synthetase (NRPS) gene of the viscosinamide BGC is situated remotely from the other two NRPS genes. In contrast, the pseudodesmin genes are all clustered in a single genomic locus. Nano- to micromolar levels of pseudodesmin and viscosinamide led to the hyphal distortion and/or disintegration of <i>Rhizoctonia solani</i> AG2-2 and <i>Pythium myriotylum</i> CMR1, whereas similar levels of White Line-Inducing Principle (WLIP), another member of the Viscosin group, resulted in complete lysis of both soil-borne phytopathogens. In addition to the identification of the biosynthetic genes of these two CLPs and the demonstration of their interaction with soil-borne pathogens, this study provides further insights regarding evolutionary divergence within the Viscosin group.
ISSN:2076-2607