Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras

In this paper, we find the solution of the following quadratic functional equation <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><msub><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i<...

Full description

Bibliographic Details
Main Authors: Hark-Mahn Kim, Hwan-Yong Shin
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/9/1630
_version_ 1827705809687019520
author Hark-Mahn Kim
Hwan-Yong Shin
author_facet Hark-Mahn Kim
Hwan-Yong Shin
author_sort Hark-Mahn Kim
collection DOAJ
description In this paper, we find the solution of the following quadratic functional equation <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><msub><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mi>Q</mi><mfenced separators="" open="(" close=")"><msub><mi>x</mi><mi>i</mi></msub><mo>−</mo><msub><mi>x</mi><mi>j</mi></msub></mfenced><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mi>Q</mi><mfenced separators="" open="(" close=")"><msub><mo>∑</mo><mrow><mi>j</mi><mo>≠</mo><mi>i</mi></mrow></msub><msub><mi>x</mi><mi>j</mi></msub><mo>−</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>x</mi><mi>i</mi></msub></mfenced></mrow></semantics></math></inline-formula>, which is derived from the gravity of the <i>n</i> distinct vectors <inline-formula><math display="inline"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>x</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> in an inner product space, and prove that the stability results of the <inline-formula><math display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula>-quadratic mappings in <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>-complete convex fuzzy modular ∗-algebras without using lower semicontinuity and <inline-formula><math display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-homogeneous property.
first_indexed 2024-03-10T16:10:59Z
format Article
id doaj.art-c2f9eec7e32a430e9cb9adbb8738774f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T16:10:59Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c2f9eec7e32a430e9cb9adbb8738774f2023-11-20T14:28:00ZengMDPI AGMathematics2227-73902020-09-0189163010.3390/math8091630Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-AlgebrasHark-Mahn Kim0Hwan-Yong Shin1Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, KoreaDepartment of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, KoreaIn this paper, we find the solution of the following quadratic functional equation <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><msub><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mi>Q</mi><mfenced separators="" open="(" close=")"><msub><mi>x</mi><mi>i</mi></msub><mo>−</mo><msub><mi>x</mi><mi>j</mi></msub></mfenced><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mi>Q</mi><mfenced separators="" open="(" close=")"><msub><mo>∑</mo><mrow><mi>j</mi><mo>≠</mo><mi>i</mi></mrow></msub><msub><mi>x</mi><mi>j</mi></msub><mo>−</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>x</mi><mi>i</mi></msub></mfenced></mrow></semantics></math></inline-formula>, which is derived from the gravity of the <i>n</i> distinct vectors <inline-formula><math display="inline"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>x</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> in an inner product space, and prove that the stability results of the <inline-formula><math display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula>-quadratic mappings in <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>-complete convex fuzzy modular ∗-algebras without using lower semicontinuity and <inline-formula><math display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-homogeneous property.https://www.mdpi.com/2227-7390/8/9/1630fuzzy modular ∗-algebrasmodular ∗-algebras?-quadratic derivationΔ<sub>2</sub>-condition<i>β</i>-homogeneous property
spellingShingle Hark-Mahn Kim
Hwan-Yong Shin
Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
Mathematics
fuzzy modular ∗-algebras
modular ∗-algebras
?-quadratic derivation
Δ<sub>2</sub>-condition
<i>β</i>-homogeneous property
title Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
title_full Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
title_fullStr Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
title_full_unstemmed Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
title_short Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
title_sort ulam type stability of quadratic mappings in fuzzy modular ∗ algebras
topic fuzzy modular ∗-algebras
modular ∗-algebras
?-quadratic derivation
Δ<sub>2</sub>-condition
<i>β</i>-homogeneous property
url https://www.mdpi.com/2227-7390/8/9/1630
work_keys_str_mv AT harkmahnkim ulamtypestabilityofquadraticmappingsinfuzzymodularalgebras
AT hwanyongshin ulamtypestabilityofquadraticmappingsinfuzzymodularalgebras