Supersymmetric traversable wormholes

Abstract We study traversable wormhole solutions in pure gauged N = 2 supergravity with and without electromagnetic fields, which are locally isometric under SO(2, 1) × SO(1, 1). The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non...

Full description

Bibliographic Details
Main Authors: Andrés Anabalón, Bernard de Wit, Julio Oliva
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP09(2020)109
Description
Summary:Abstract We study traversable wormhole solutions in pure gauged N = 2 supergravity with and without electromagnetic fields, which are locally isometric under SO(2, 1) × SO(1, 1). The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non-contractible cycle can be obtained by compactifying one of the coordinates which leaves the residual supersymmetry unaffected, although not all the isometries will remain realized globally. The wormholes connect two asymptotic, locally AdS4 regions and depend on certain electric and magnetic charge parameters and, implicitly, on the range of the compact coordinate around the throat. We provide an analysis of the boundary of the spacetime and show that it can be either disconnected or not, depending on the values of the parameters in the metric. Finally, we show how a class of these space-times avoid a topological censorship theorem.
ISSN:1029-8479