Dual-edged sword of ion migration in perovskite materials for simultaneous energy harvesting and storage application

Summary: Portable electronic devices and Internet of Things (IoT) require an uninterrupted power supply for their optimum performance and are key ingredients of the futuristic smart buildings - cities. The off-grid photovoltaic cells and photo-rechargeable energy storage devices meet the requirement...

Full description

Bibliographic Details
Main Authors: Ramesh Kumar, Monojit Bag, Sagar M. Jain
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223022496
Description
Summary:Summary: Portable electronic devices and Internet of Things (IoT) require an uninterrupted power supply for their optimum performance and are key ingredients of the futuristic smart buildings - cities. The off-grid photovoltaic cells and photo-rechargeable energy storage devices meet the requirements for continuous data processing and transmission. In addition, these off-grid devices can solve the energy mismanagement problem famously called as “duck curve”. The conventional approach is the external integration of a photovoltaic cell and an energy storage device through a complex multi-layered structure. However, this approach causes ohmic transport losses and requires additional complex device packaging leading to increased weight and high cost. Toward this narrative, in this viewpoint, we shed light on application of disruptive organic-inorganic hybrid halide perovskite bifunctional materials employed as smart photo-rechargeable energy devices. We also present hybrid halide lead-free perovskite materials for off-grid energy storage systems for indoor lighting applications.
ISSN:2589-0042