The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges

The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are i...

Full description

Bibliographic Details
Main Authors: Alejandra Barrera-Rosales, Romina Rodríguez-Sanoja, Rogelio Hernández-Pando, Silvia Moreno-Mendieta
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/11/8/1988
Description
Summary:The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic or prophylactic approaches to control tuberculosis, one of the most important infectious diseases worldwide. This article reviews the progress and current state of the use of particles for the administration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric particles. In addition, we discuss the challenges and benefits of using these particulate systems to provide researchers with an overview of the most promising strategies in current preclinical trials, offering a perspective on their progress to clinical trials.
ISSN:2076-2607