Review of Recent Computational Research on the Adsorption of PFASs with a Variety of Substrates

The widespread use and impervious nature of per- and polyfluorinated alkyl substances (PFASs) is leading to potentially harmful exposure in numerous environments. One avenue to explore remediation of PFAS-contaminated environments involves investigating how well PFASs adsorb onto various substrates....

Full description

Bibliographic Details
Main Authors: Alfonso Minervino, Kevin D. Belfield
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/25/6/3445
Description
Summary:The widespread use and impervious nature of per- and polyfluorinated alkyl substances (PFASs) is leading to potentially harmful exposure in numerous environments. One avenue to explore remediation of PFAS-contaminated environments involves investigating how well PFASs adsorb onto various substrates. In the current review, we focus on summarizing recent computational research, largely involving density functional theory (DFT) and molecular dynamics (MD), into the adsorption and interaction of PFASs with a variety of substrates with an aim to provide insight and inspire further research that may lead to solutions to this critical problem that impacts the environment and human health.
ISSN:1661-6596
1422-0067