Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types
The most important parameter for determining the level of performance and breakdown of buried pipes in the case of earthquake is the maximum value of strain. Vital arteries code, while studying the maximum value of strain, have addressed the seismic behavior of buried pipelines. Static methods don’t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Iranian Society of Structrual Engineering (ISSE)
2019-08-01
|
Series: | Journal of Structural and Construction Engineering |
Subjects: | |
Online Access: | https://www.jsce.ir/article_57928_cfb9b61d65b8f9ff84ca1a6f69b1c6da.pdf |
_version_ | 1818933381221580800 |
---|---|
author | Jamal Ahmadi Ali Goharrokhi Ali Nankeli Reza Rasti |
author_facet | Jamal Ahmadi Ali Goharrokhi Ali Nankeli Reza Rasti |
author_sort | Jamal Ahmadi |
collection | DOAJ |
description | The most important parameter for determining the level of performance and breakdown of buried pipes in the case of earthquake is the maximum value of strain. Vital arteries code, while studying the maximum value of strain, have addressed the seismic behavior of buried pipelines. Static methods don’t have the ability to consider the transient strain effect in their results, so it is necessary to consider another method in determining maximum strain. From the suggested methods to determine the maximum strain in buried pipes during earthquake is nonlinear dynamic analysis of pipes and the soil around it. In this study, using Abaqus software, we have presented a method to calculate the maximum strain of buried steel pipes for gas transfer in soil according to the parameters including earthquake energy like Arias intensity and Housner spectral intensity and using accelerograms. Analyses performed according to dynamic method is nonlinear and modeling has been done for three different lengths of gas transfer buried steel pipes in soil, with the internal pressure using different accelerograms for types of soil in Iran 2800 code. Then, in order to present a united relation to show the relationship between maximum strain of steel pipes and parameters including earthquake energy, in order to apply the considered relation for buried pipes with different lengths and different soils, we have used T/L parameter and the values of a and b (coefficients of fitted diagrams) in each section is expressed according to this parameter |
first_indexed | 2024-12-20T04:47:28Z |
format | Article |
id | doaj.art-c350dc7211c04b8c8b815bcf978cb978 |
institution | Directory Open Access Journal |
issn | 2476-3977 2538-2616 |
language | fas |
last_indexed | 2024-12-20T04:47:28Z |
publishDate | 2019-08-01 |
publisher | Iranian Society of Structrual Engineering (ISSE) |
record_format | Article |
series | Journal of Structural and Construction Engineering |
spelling | doaj.art-c350dc7211c04b8c8b815bcf978cb9782022-12-21T19:52:57ZfasIranian Society of Structrual Engineering (ISSE)Journal of Structural and Construction Engineering2476-39772538-26162019-08-016شماره 217719010.22065/jsce.2018.99586.133857928Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil TypesJamal Ahmadi0Ali Goharrokhi1Ali Nankeli2Reza Rasti3Asistant Prof., Faculty of Engineering., University of Zanjanuniversity of zanjanM.Sc. of Structure Engineering, Faculty of Engineering., University of ZanjanAsistant Prof., Structure Eng. Dept., Faculty of Civil Eng., Shahid Beheshti Modares UniversityThe most important parameter for determining the level of performance and breakdown of buried pipes in the case of earthquake is the maximum value of strain. Vital arteries code, while studying the maximum value of strain, have addressed the seismic behavior of buried pipelines. Static methods don’t have the ability to consider the transient strain effect in their results, so it is necessary to consider another method in determining maximum strain. From the suggested methods to determine the maximum strain in buried pipes during earthquake is nonlinear dynamic analysis of pipes and the soil around it. In this study, using Abaqus software, we have presented a method to calculate the maximum strain of buried steel pipes for gas transfer in soil according to the parameters including earthquake energy like Arias intensity and Housner spectral intensity and using accelerograms. Analyses performed according to dynamic method is nonlinear and modeling has been done for three different lengths of gas transfer buried steel pipes in soil, with the internal pressure using different accelerograms for types of soil in Iran 2800 code. Then, in order to present a united relation to show the relationship between maximum strain of steel pipes and parameters including earthquake energy, in order to apply the considered relation for buried pipes with different lengths and different soils, we have used T/L parameter and the values of a and b (coefficients of fitted diagrams) in each section is expressed according to this parameterhttps://www.jsce.ir/article_57928_cfb9b61d65b8f9ff84ca1a6f69b1c6da.pdfvital arteriesmaximum strainburied pipeaccelerogramseismic behaviour |
spellingShingle | Jamal Ahmadi Ali Goharrokhi Ali Nankeli Reza Rasti Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types Journal of Structural and Construction Engineering vital arteries maximum strain buried pipe accelerogram seismic behaviour |
title | Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types |
title_full | Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types |
title_fullStr | Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types |
title_full_unstemmed | Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types |
title_short | Behaviour Verification of Gas Transfer Buried Steel Pipelines by Propagation of Seismic Waves in Soil Types |
title_sort | behaviour verification of gas transfer buried steel pipelines by propagation of seismic waves in soil types |
topic | vital arteries maximum strain buried pipe accelerogram seismic behaviour |
url | https://www.jsce.ir/article_57928_cfb9b61d65b8f9ff84ca1a6f69b1c6da.pdf |
work_keys_str_mv | AT jamalahmadi behaviourverificationofgastransferburiedsteelpipelinesbypropagationofseismicwavesinsoiltypes AT aligoharrokhi behaviourverificationofgastransferburiedsteelpipelinesbypropagationofseismicwavesinsoiltypes AT alinankeli behaviourverificationofgastransferburiedsteelpipelinesbypropagationofseismicwavesinsoiltypes AT rezarasti behaviourverificationofgastransferburiedsteelpipelinesbypropagationofseismicwavesinsoiltypes |