On-device mobile visual location recognition by using panoramic images and compressed sensing based visual descriptors.

Mobile Visual Location Recognition (MVLR) has attracted a lot of researchers' attention in the past few years. Existing MVLR applications commonly use Query-by-Example (QBE) based image retrieval principle to fulfill the location recognition task. However, the QBE framework is not reliable enou...

Full description

Bibliographic Details
Main Authors: Tao Guan, Yin Fan, Liya Duan, Junqing Yu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4043852?pdf=render
Description
Summary:Mobile Visual Location Recognition (MVLR) has attracted a lot of researchers' attention in the past few years. Existing MVLR applications commonly use Query-by-Example (QBE) based image retrieval principle to fulfill the location recognition task. However, the QBE framework is not reliable enough due to the variations in the capture conditions and viewpoint changes between the query image and the database images. To solve the above problem, we make following contributions to the design of a panorama based on-device MVLR system. Firstly, we design a heading (from digital compass) aware BOF (Bag-of-features) model to generate the descriptors of panoramic images. Our approach fully considers the characteristics of the panoramic images and can facilitate the panorama based on-device MVLR to a large degree. Secondly, to search high dimensional visual descriptors directly on mobile devices, we propose an effective bilinear compressed sensing based encoding method. While being fast and accurate enough for on-device implementation, our algorithm can also reduce the memory usage of projection matrix significantly. Thirdly, we also release a panoramas database as well as a set of test panoramic quires which can be used as a new benchmark to facilitate further research in the area. Experimental results prove the effectiveness of the proposed methods for on-device MVLR applications.
ISSN:1932-6203