Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset

ObjectivesTo assess the feasibility of extracting radiomics signal intensity based features from the myocardium using cardiovascular magnetic resonance (CMR) imaging stress perfusion sequences. Furthermore, to compare the diagnostic performance of radiomics models against standard-of-care qualitativ...

Full description

Bibliographic Details
Main Authors: Zahra Raisi-Estabragh, Carlos Martin-Isla, Louise Nissen, Liliana Szabo, Victor M. Campello, Sergio Escalera, Simon Winther, Morten Bøttcher, Karim Lekadir, Steffen E. Petersen
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-09-01
Series:Frontiers in Cardiovascular Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcvm.2023.1141026/full
_version_ 1797682421395619840
author Zahra Raisi-Estabragh
Zahra Raisi-Estabragh
Carlos Martin-Isla
Louise Nissen
Liliana Szabo
Liliana Szabo
Liliana Szabo
Victor M. Campello
Sergio Escalera
Sergio Escalera
Simon Winther
Morten Bøttcher
Karim Lekadir
Steffen E. Petersen
Steffen E. Petersen
Steffen E. Petersen
Steffen E. Petersen
author_facet Zahra Raisi-Estabragh
Zahra Raisi-Estabragh
Carlos Martin-Isla
Louise Nissen
Liliana Szabo
Liliana Szabo
Liliana Szabo
Victor M. Campello
Sergio Escalera
Sergio Escalera
Simon Winther
Morten Bøttcher
Karim Lekadir
Steffen E. Petersen
Steffen E. Petersen
Steffen E. Petersen
Steffen E. Petersen
author_sort Zahra Raisi-Estabragh
collection DOAJ
description ObjectivesTo assess the feasibility of extracting radiomics signal intensity based features from the myocardium using cardiovascular magnetic resonance (CMR) imaging stress perfusion sequences. Furthermore, to compare the diagnostic performance of radiomics models against standard-of-care qualitative visual assessment of stress perfusion images, with the ground truth stenosis label being defined by invasive Fractional Flow Reserve (FFR) and quantitative coronary angiography.MethodsWe used the Dan-NICAD 1 dataset, a multi-centre study with coronary computed tomography angiography, 1,5 T CMR stress perfusion, and invasive FFR available for a subset of 148 patients with suspected coronary artery disease. Image segmentation was performed by two independent readers. We used the Pyradiomics platform to extract radiomics first-order (n = 14) and texture (n = 75) features from the LV myocardium (basal, mid, apical) in rest and stress perfusion images.ResultsOverall, 92 patients (mean age 62 years, 56 men) were included in the study, 39 with positive FFR. We double-cross validated the model and, in each inner fold, we trained and validated a per territory model. The conventional analysis results reported sensitivity of 41% and specificity of 84%. Our final radiomics model demonstrated an improvement on these results with an average sensitivity of 53% and specificity of 86%.ConclusionIn this proof-of-concept study from the Dan-NICAD dataset, we demonstrate the feasibility of radiomics analysis applied to CMR perfusion images with a suggestion of superior diagnostic performance of radiomics models over conventional visual analysis of perfusion images in picking up perfusion defects defined by invasive coronary angiography.
first_indexed 2024-03-11T23:59:29Z
format Article
id doaj.art-c361f87706484a03bff1ae17d36b2e44
institution Directory Open Access Journal
issn 2297-055X
language English
last_indexed 2024-03-11T23:59:29Z
publishDate 2023-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cardiovascular Medicine
spelling doaj.art-c361f87706484a03bff1ae17d36b2e442023-09-18T05:49:12ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2023-09-011010.3389/fcvm.2023.11410261141026Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD datasetZahra Raisi-Estabragh0Zahra Raisi-Estabragh1Carlos Martin-Isla2Louise Nissen3Liliana Szabo4Liliana Szabo5Liliana Szabo6Victor M. Campello7Sergio Escalera8Sergio Escalera9Simon Winther10Morten Bøttcher11Karim Lekadir12Steffen E. Petersen13Steffen E. Petersen14Steffen E. Petersen15Steffen E. Petersen16William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United KingdomBarts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United KingdomDept. de Matematiques I Informatica, University of Barcelona, Barcelona, SpainDepartment of Cardiology, Regionshospital Gødstrup, Herning, DenmarkWilliam Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United KingdomBarts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United KingdomHeart and Vascular Center, Semmelweis University, Budapest, HungaryDept. de Matematiques I Informatica, University of Barcelona, Barcelona, SpainDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainComputer Vision Center, Univeritat Autònoma de Barcelona, Barcelona, SpainDepartment of Cardiology, Regionshospital Gødstrup, Herning, DenmarkDepartment of Cardiology, Regionshospital Gødstrup, Herning, DenmarkDept. de Matematiques I Informatica, University of Barcelona, Barcelona, SpainWilliam Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United KingdomBarts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United KingdomHealth Data Research UK, London, United KingdomAlan Turing Institute, London, United KingdomObjectivesTo assess the feasibility of extracting radiomics signal intensity based features from the myocardium using cardiovascular magnetic resonance (CMR) imaging stress perfusion sequences. Furthermore, to compare the diagnostic performance of radiomics models against standard-of-care qualitative visual assessment of stress perfusion images, with the ground truth stenosis label being defined by invasive Fractional Flow Reserve (FFR) and quantitative coronary angiography.MethodsWe used the Dan-NICAD 1 dataset, a multi-centre study with coronary computed tomography angiography, 1,5 T CMR stress perfusion, and invasive FFR available for a subset of 148 patients with suspected coronary artery disease. Image segmentation was performed by two independent readers. We used the Pyradiomics platform to extract radiomics first-order (n = 14) and texture (n = 75) features from the LV myocardium (basal, mid, apical) in rest and stress perfusion images.ResultsOverall, 92 patients (mean age 62 years, 56 men) were included in the study, 39 with positive FFR. We double-cross validated the model and, in each inner fold, we trained and validated a per territory model. The conventional analysis results reported sensitivity of 41% and specificity of 84%. Our final radiomics model demonstrated an improvement on these results with an average sensitivity of 53% and specificity of 86%.ConclusionIn this proof-of-concept study from the Dan-NICAD dataset, we demonstrate the feasibility of radiomics analysis applied to CMR perfusion images with a suggestion of superior diagnostic performance of radiomics models over conventional visual analysis of perfusion images in picking up perfusion defects defined by invasive coronary angiography.https://www.frontiersin.org/articles/10.3389/fcvm.2023.1141026/fullradiomicsDan-NICADCMR (cardiovascular magnetic resonance)stress perfusion cardiac MRImachine learning (ML)
spellingShingle Zahra Raisi-Estabragh
Zahra Raisi-Estabragh
Carlos Martin-Isla
Louise Nissen
Liliana Szabo
Liliana Szabo
Liliana Szabo
Victor M. Campello
Sergio Escalera
Sergio Escalera
Simon Winther
Morten Bøttcher
Karim Lekadir
Steffen E. Petersen
Steffen E. Petersen
Steffen E. Petersen
Steffen E. Petersen
Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset
Frontiers in Cardiovascular Medicine
radiomics
Dan-NICAD
CMR (cardiovascular magnetic resonance)
stress perfusion cardiac MRI
machine learning (ML)
title Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset
title_full Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset
title_fullStr Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset
title_full_unstemmed Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset
title_short Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset
title_sort radiomics analysis enhances the diagnostic performance of cmr stress perfusion a proof of concept study using the dan nicad dataset
topic radiomics
Dan-NICAD
CMR (cardiovascular magnetic resonance)
stress perfusion cardiac MRI
machine learning (ML)
url https://www.frontiersin.org/articles/10.3389/fcvm.2023.1141026/full
work_keys_str_mv AT zahraraisiestabragh radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT zahraraisiestabragh radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT carlosmartinisla radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT louisenissen radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT lilianaszabo radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT lilianaszabo radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT lilianaszabo radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT victormcampello radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT sergioescalera radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT sergioescalera radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT simonwinther radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT mortenbøttcher radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT karimlekadir radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT steffenepetersen radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT steffenepetersen radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT steffenepetersen radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset
AT steffenepetersen radiomicsanalysisenhancesthediagnosticperformanceofcmrstressperfusionaproofofconceptstudyusingthedannicaddataset