Regionalização de vazões de referência para bacias do rio Araguaia, Brasil

Projetos hidráulicos e a gestão da água demandam dados hidrológicos confiáveis. A bacia hidrográfica do rio Araguaia-Tocantins, além do uso agrícola, apresenta grande potencial para exploração hidroelétrica. No entanto, a rede de monitoramento fluviométrico na bacia hidrográfica do rio Araguaia apre...

Full description

Bibliographic Details
Main Authors: Marco Antonio Vieira Morais, Marcelo Ribeiro Viola, Carlos Rogério de Mello, Jéssica Assaid Martins Rodrigues, Vinícius Augusto de Oliveira
Format: Article
Language:English
Published: Universidade Estadual de Londrina 2020-04-01
Series:Semina: Ciências Agrárias
Subjects:
Online Access:https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36430
Description
Summary:Projetos hidráulicos e a gestão da água demandam dados hidrológicos confiáveis. A bacia hidrográfica do rio Araguaia-Tocantins, além do uso agrícola, apresenta grande potencial para exploração hidroelétrica. No entanto, a rede de monitoramento fluviométrico na bacia hidrográfica do rio Araguaia apresenta densidade reduzida de estações, o que implica na falta de dados hidrológicos. A regionalização de vazões de referência é uma técnica que pode ajudar a contornar essa insuficiência de dados, propiciando a estimativa de vazões a partir de variáveis explicativas de fácil obtenção. Neste contexto, objetivou-se desenvolver funções regionais para vazão máxima (Qmax) aplicáveis a diferentes Períodos de Retorno (RP), vazão média em longo prazo (Qmlt) e vazão com 95% de permanência (Q95) para as sub-bacias de alto e médio curso do rio Araguaia. Adotou-se a metodologia da vazão adimensional e a área de drenagem como variável explicativa. Os modelos regressivos testados foram o linear, potencial e quociente. Empregou-se para verificação da qualidade dos modelos regionais a validação-cruzada leave-one-out. Utilizou-se 10 distribuições estatística de 2 a 5 parâmetros. (i) Obtiveram-se resultados satisfatórios para todas as vazões de referência. (ii) A técnica de validação cruzada mostrou-se essencial para a seleção do modelo mais robusto. (iii) O modelo de quociente mostrou-se superior ao modelo potencial e linear na maioria dos casos.
ISSN:1676-546X
1679-0359